摘要:从量子不一致性的角度研究原初引力波的压缩效应。构造了不具有量子不一致性原初引力波的经典态,并与邦奇-戴维斯真空进行比较,证明了原初引力波引起的宇宙微波背景涨落的角功率谱的振荡行为可以作为原初引力波量子不一致性的特征。此外,还讨论了量子退相干对超视界模式下原初引力波的纠缠和量子不一致性的影响。对于具有退相干效应的原初引力波态,我们考察了C. Kiefer 等人引入的退相干条件和关联条件(Class. Quantum Grav. 24 (2007) 1699)。我们表明,退相干条件不足以保证 PGW 的可分离性,而关联条件意味着物质主导时代的 PGW 具有量子不一致性。
摘要:我们考虑具有正宇宙常数并与具有大正中心电荷的共形场论耦合的二维量子引力。我们研究经典和量子层面的宇宙学特性。我们对经典相空间进行了完整的 ADM 分析,揭示了一类弹跳或大爆炸/压缩类型的宇宙学。在量子层面,我们精确地求解了 Wheeler-DeWitt 方程。在半经典极限中,我们将 Wheeler-DeWitt 状态空间与经典相空间联系起来。确定了 Hartle-Hawking 和 Vilenkin 类型的波函数,并发现了弹跳时空的量子版本。我们从类时间刘维尔理论的圆盘路径积分中检索了 Hartle-Hawking 波函数。为此,我们必须在复杂场空间中选择一个特定的轮廓。讨论了大爆炸宇宙学的量子信息内容,并将其与通过二球面引力路径积分计算出的德西特视界熵进行了对比。
摘要:由于航空运输需求的快速增长,机场地面出现拥堵和延误。本研究的目的是确定优化和观察到的运营之间的差异,以改善东京国际机场的机场地面运营,方法是使用混合整数线性规划来最小化基于实时航班信息的总地面移动距离和时间。考虑使用后退式视界方案来适应动态环境。与观测数据相比,该模型获得的结果使滑行距离减少了 18.54%,滑行时间减少了 29.77%。优化结果与观测数据之间的滑行道使用模式的比较可以深入了解优化过程,例如跑道交叉策略和滑行道方向规则的变化。发现目标函数权重和航空公司与航站楼关系等因素对优化结果有显著影响。本研究提出了可以在机场进行的改进,以实现更高效的地面运营。
当转换和奖励函数未知时,马尔可夫决策过程是现代强化学习领域的基础数学形式化。我们推导出一个伪布尔成本函数,它相当于离散、有限、折现马尔可夫决策过程的 K 自旋汉密尔顿表示,具有无限的视界。这个 K 自旋汉密尔顿提供了一个起点,可以使用启发式量子算法(例如绝热量子退火和近期量子硬件上的量子近似优化算法)来求解最优策略。在证明我们的汉密尔顿的变分最小化等同于贝尔曼最优条件时,我们建立了与经典场论的有趣类比。除了通过模拟和量子退火与经典 Q 学习进行概念验证计算以证实我们的公式外,我们还分析了在量子硬件上解决汉密尔顿所需的物理资源的扩展。
过去几十年来,黑洞信息悖论一直备受争议,但尚未得到完全解决。因此,人们希望在简单且可通过实验获得的系统中找到该悖论的类似物,这些系统的解决可能有助于解决这个长期存在的基本问题。在这里,我们识别并解决了 Halperin-331 和 Pfaf 态之间量子霍尔界面中明显的“信息悖论”。当 Abel 331 准粒子穿过界面进入非 Abel 普法夫态时,其伪自旋自由度携带的信息会被打乱,无法进行局部测量;从这个意义上说,普法夫区域是黑洞内部的类似物,而界面的作用类似于黑洞视界。我们证明,一旦“黑洞”蒸发,准粒子返回 331 区域,“丢失”的信息就会恢复,尽管是高度纠缠的形式。这种恢复可以通过这些准粒子所携带的熵的佩奇曲线来量化,这些准粒子是霍金辐射的类似物。
摘要:Callan–Giddings–Harvey–Strominger 黑洞的光谱和温度与平坦时空中的加速反射边界条件相对应。beta 系数与移动镜模型相同,其中加速度在实验室时间内呈指数增长。黑洞中心由完全反射的规律性条件建模,该条件使场模式发生红移,这是粒子产生的源头。除了计算能量通量外,我们还找到了与黑洞质量和引力模拟系统中的宇宙常数相关的相应移动镜参数。推广到任何镜像轨迹,我们推导出自力(洛伦兹-亚伯拉罕-狄拉克),一致地将其和拉莫尔功率与纠缠熵联系起来,从而引发了对信息流加速辐射的解释。将镜面自力和辐射功率施加到特定的CGHS黑洞模拟动镜上,揭示了渐近热平衡过程中视界信息的物理特性。
过去几十年来,黑洞信息悖论一直备受争议,但尚未得到完全解决。因此,人们希望在简单且可通过实验获得的系统中找到该悖论的类似物,这些系统的解决可能有助于解决这个长期存在的基本问题。在这里,我们识别并解决了 Halperin-331 和 Pfaffian 态之间量子霍尔界面中明显的“信息悖论”。当阿贝尔 331 准粒子穿过界面进入非阿贝尔 Pfaffian 态时,其伪自旋自由度携带的信息会被打乱,无法进行局部测量;从这个意义上说,Pfaffian 区域是黑洞内部的类似物,而界面的作用类似于黑洞的视界。我们证明,一旦“黑洞”蒸发,准粒子返回 331 区域,“丢失”的信息就会恢复,尽管是高度纠缠的形式。这种恢复可以通过这些准粒子所携带的熵的佩奇曲线来量化,这些准粒子是霍金辐射的类似物。
1994 年,Susskind 和 Uglum 提出,有可能从弦理论中推导出贝肯斯坦-霍金熵 A / 4 GN。在本文中,我们解释了这一论点的概念基础,同时阐明了它与诱导引力和 ER = EPR 的关系。根据 Tseytlin 的离壳计算,我们明确地从 α ′ 的领先阶球面图中推导出经典闭弦有效作用。然后,我们展示了如何利用这一点从圆锥流形上的 NLSM 的 RG 流中获得黑洞熵。 (我们还简要讨论了 Susskind 和 Uglum 提出的更成问题的“开弦图景”,其中弦在视界结束。)然后,我们将这些离壳结果与使用壳上 C / ZN 背景的竞争对手“轨道折叠复制技巧”进行比较,后者不考虑领先阶贝肯斯坦-霍金熵——除非允许快子在轨道折叠上凝聚。探讨了与 ER = EPR 猜想的可能联系。最后,我们讨论了各种扩展的前景,包括在 AdS 本体中推导出全息纠缠熵的前景。
摘要 — 本研究提出了一种能够从零点能量 (ZPE) 场中提取能量的装置的理论公式和设计。通过整合霍金辐射、量子信息论和量子场论的原理,我们提出了一种新的能量提取机制。该装置具有一个事件视界模拟器和一个能量提取机制,旨在利用量子涨落,类似于黑洞附近的条件。我们通过严格的数学公式验证了该设计,包括 ZPE 的正则化技术以及与核聚变和裂变过程的相似性。此外,通过将封闭系统视为暗物质黑洞并采用非交换几何,该装置探索了物质和能量的奇异状态。这些先进的理论构造对于保持量子相干性和实现有效的能量提取至关重要。该设计采用了尖端材料和超导技术,量子信息处理确保遵守能量守恒。这项研究的潜在影响是巨大的,为能源生产提供了一种可持续的革命性方法。未来的技术进步和持续的研究对于实际实现至关重要,为未来能源技术的重大贡献铺平了道路。
我们考虑在提供 n 个状态副本时以零误差区分对称纯状态的在线策略。优化的在线策略涉及对每个副本进行局部、可能自适应的测量,并且在每个步骤中都是最优的,这使得它们与视界无关,因此在粒子丢失或突然终止鉴别过程之前具有鲁棒性。我们首先回顾了以前关于使用局部测量实现最大成功概率集的二进制最小和零误差鉴别的结果,这些结果通过对全局测量进行优化来实现,并突出了它们的在线特性。然后,我们将这些结果扩展到具有恒定重叠的三个对称状态的零误差识别的情况。如果状态重叠为正,则我们提供最佳在线方案,对于任何 n 都可实现全局性能,如果重叠为负,则对于奇数 n 可实现全局性能。对于任意复杂的重叠,我们展示了令人信服的证据表明在线方案无法达到最佳全局性能。我们描述的在线方案只需要将最后获得的结果存储在经典内存中,并且测量的自适应性最多减少到两次变化,而不管 n 的值如何。