在生命的前六个月中,在前十年中,视觉发展一直持续。足月新生儿可能会呈现视觉固定,但是遵循目标的能力通常仅在两个月大时才存在。颜色歧视和对比敏感性存在,但在新生儿中发育不良。1眼神接触是早期亲子互动的重要步骤,缺乏目光接触或明显的视觉行为应提醒父母和临床医生。2如果婴儿在生命的前两个月内不具有视觉固定和跟踪,则可以将他们转介给眼科医生,以评估延迟视觉成熟(DVM)。这些孩子可能还有其他问题,例如早产,全身性疾病或眼睛的结构异常,但否则也可能是正常的。1 Uemura等人已经提出了DVM的详细分类。3将这些孩子分为三组:第一组包括没有异常的孩子;第二个包括发育延迟的人;第三个包括眼异常。
不同类别的视觉刺激激活人脑中的不同反应。这些信号可以用脑电图捕获,以在诸如脑部计算机界面(BCI)之类的应用中利用。然而,由于脑电图的信噪比低,单审数据的准确分类是具有挑战性的。这项工作介绍了一个基于多头自我注意力的EEG-Convtranformer网络。与其他变压器不同,该模型结合了自我注意事项以捕获区域间相互作用。它进一步扩展到辅助卷积过滤器,并以多头注意力作为学习时间模式的单个模块。实验结果表明,在五个不同的视觉刺激分类任务上,EEG-ConvTransFormer在最新技术上实现了分类精度的提高。最后,对头间多样性的定量分析在表示子空间中的相似性也很低,这强调了多头关注的隐式多样性。
大脑计算机界面(BCIS)是传统上用于医学的系统,旨在与大脑相互作用以记录或刺激神经元。尽管有好处,但文献表明,专注于神经刺激的侵入性BCI当前的脆弱性使攻击者能够控制。在这种情况下,神经网络攻击成为能够通过进行神经过度刺激或抑制来破坏自发神经活动的威胁。先前的工作在小型模拟中验证了这些攻击,其神经元数量减少,缺乏现实世界中的复杂性。Thus, this work tackles this limitation by analyzing the impact of two existing neural attacks, Neuronal Flooding (FLO) and Neuronal Jamming (JAM), on a complex neuronal topology of the primary visual cortex of mice consisting of approximately 230,000 neurons, tested on three realistic visual stimuli: flash e ff ect, movie, and drifting gratings.在每个刺激的三个相关事件中评估了每次攻击,还测试了攻击25%和50%神经元的影响。根据尖峰和偏移百分比的数量,结果表明,攻击对电影产生了最大的影响,而黑暗和固定事件是最强大的。尽管两种攻击都可以显着发作神经活动,但果酱通常更具破坏性,产生更长的时间延迟,并且患病率更高。最后,果酱不需要改变许多神经元以显着发神经活动,而FLO的影响随着攻击的神经元数量而增加。
1 波罗的海人工智能与神经技术中心,伊曼纽尔康德波罗的海联邦大学,236016 加里宁格勒,俄罗斯;s.kurkin@innopolis.ru (SAK);v.maksimenko@innopolis.ru (VAM);a.hramov@innopolis.ru (AEH) 2 伊诺波利斯大学机器人与机电一体化组件技术中心,420500 伊诺波利斯,俄罗斯; alexander.pisarchik@ctb.upm.es 3 下诺夫哥罗德罗巴切夫斯基国立大学神经技术系,603022 下诺夫哥罗德,俄罗斯 4 萨拉托夫国立医科大学心脏病学研究所创新心脏病信息技术系,410012 萨拉托夫,俄罗斯 5 马德里理工大学生物医学技术中心,波苏埃洛德阿拉尔孔,28223 马德里,西班牙 * 通信地址:plo@sstu.ru † 这些作者对这项工作做出了同等贡献。
归因于脑电图(EEG)信号的信噪比差(SNR)[3]。可以通过增加信号水平和/或降低噪声水平来改善SSVEP信号的SNR。研究人员在改善SSVEP的SNR并提高BCI性能方面取得了长足的进步。首先,研究人员通过应用高级信号处理方法改善了SNR。例如,在当前的BCI系统中广泛使用试验平均,以改善脑电图分析中的SNR [3]。空间过滤已用于将多通道脑电图数据投射到低维空间空间中,以消除任务 - 无关的组件并改善与任务相关的EEG信号的SNR [4]。对于SSVEP,规范相关分析(CCA)方法可以最大程度地提高SSVEP的检测频率[5,6]。独立的组件分析是另一种空间滤波方法,通过将与任务相关的脑电图组件与任务 - iRrelevant eeg和人为成分分开,从而增强了脑电图信号的SNR [7,8]。第二,研究人员设计了实验以获得增强的与任务相关的脑电图信号并改善SNR。例如,在有效的基于SSVEP的BCI中,与使用Checkerboard刺激获得的刺激相比,使用情感人脸的视觉刺激大大提高了SSVEP信号的振幅[9]。第三,一些研究人员调整了视觉刺激亮度的参数,以调节SSVEP响应的幅度,从而改善了SSVEP的SNR [10-12]。例如,相关研究表明,亮度对比信息对于形式,运动和深度的感知至关重要[13,14]。亮度对比或“调制深度”定义为最大亮度的比率减去最小亮度与最大亮度以及
在本研究中,我们提出了一种用于基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的新型混合视觉刺激,该刺激将各种周期性运动融入传统的闪烁刺激 (FS) 或模式反转刺激 (PRS)。此外,我们研究了每种 FS 和 PRS 的最佳周期运动,以增强基于 SSVEP 的 BCI 的性能。通过根据四个不同的时间函数(用无、平方、三角和正弦表示)改变刺激的大小来实现周期性运动,总共产生八种混合视觉刺激。此外,我们开发了滤波器组典型相关分析 (FBCCA) 的扩展版本,这是一种用于基于 SSVEP 的 BCI 的最先进的无需训练分类算法,可提高基于 PRS 的混合视觉刺激的分类准确性。 20 名健康个体参加了基于 SSVEP 的 BCI 实验,以区分四种不同频率的视觉刺激。评估了平均分类准确率和信息传输率 (ITR),以比较基于 SSVEP 的 BCI 对不同混合视觉刺激的性能。此外,还评估了用户对每种混合视觉刺激的视觉疲劳程度。结果,对于 FS,当除 3 秒外的所有窗口大小都加入正弦波形的周期运动时,报告的性能最高。对于 PRS,方波的周期运动在所有测试窗口大小中显示出最高的分类准确率。两种最佳刺激之间的性能没有观察到显著的统计差异。据报道,正弦波周期运动的 FS 和方波周期运动的 PRS 的平均疲劳分数分别为 5.3 ± 2.05 和 4.05 ± 1.28。因此,我们的结果表明,与传统的 FS 和 PRS 相比,具有正弦波周期运动的 FS 和具有方波周期运动的 PRS 可以有效提高 BCI 性能。
研究成果概要(中文):在本研究中,我们旨在开发一种使用 P300 和稳态视觉诱发电位 (SSVEP) 的混合型输入系统,这两种技术在利用脑电图进行字符输入时被广泛使用。该系统发挥了 P300 和 SSVEP 的优势,并弥补了彼此的不足。首先,我们通过视觉刺激呈现建立了一种同时生成方法。接下来,利用呈现方法,我们确认可以通过控制候选字符的呈现时间来有效分离两种不同的脑电图。我们已经证明,我们的原创方法可以实现高速输入。然而,差异程度因对象而异。这是未来需要解决的一个挑战。
视觉神经解码,即从大脑活动模式中解释外部视觉刺激的能力,是神经科学研究中的一项具有挑战性的任务。最近的研究集中于表征可以用群体级特征描述的多个神经元的活动模式。在本研究中,我们结合空间、光谱和时间特征来实现神经流形分类,该分类能够表征视觉感知并模拟人脑中的工作记忆活动。我们通过基于黎曼流形和二维 EEG 频谱图表示的自定义深度学习架构分别处理时空和光谱信息。此外,在查看 11 类(即全黑加 0-9 数字图像)MindBigData Visual MNIST 数据集时,使用基于 CNN 的分类模型对视觉刺激引起的 EEG 信号进行分类。在刺激引起的 EEG 信号分类任务上评估了所提出的集成策略的有效性,总体准确率达到 86%,与最先进的基准相当。
如图 1 所示,感知脑解码 (PBD) 是一种利用不同刺激引起的大脑反应来辨别原始感知刺激(例如视觉或听觉线索)或其某些特征的方法。通常,PBD 在认知和临床两个方面都具有优势。通过 PBD,可以仔细研究与外部刺激相对应的不同大脑活动模式。在临床环境中,大脑解码技术可以用于与患有闭锁综合症或瘫痪等疾病(这些疾病可能会损害运动和发声功能)的个体进行交流。在这种情况下,可以尝试在提供感知刺激的同时重建个体的反应或想象。此外,改进的感知脑解码方法可以用于记忆检索或可视化思维等应用,从而有助于认知研究和康复工作。