1.Arkadiusz Sitek,博士,Sano 计算医学中心,波兰克拉科夫,Nawojki 11 街,30-072 克拉科夫,波兰,a.sitek@sanoscience.org 2.Sangtae Ahn,博士,GE 研究 3.Evren Asma,博士,佳能医学研究 4.Adam Chandler,博士美国联合影像医疗全球科学合作组 5。Alvin Ihsani,博士,NVIDIA 6。Sven Prevrhal,博士,飞利浦欧洲研究中心,7。Arman Rahmim,博士,不列颠哥伦比亚大学放射学和物理学系,加拿大不列颠哥伦比亚癌症中心省级医学成像物理学家 8。Babak Saboury,医学博士,公共卫生硕士,DABR,DABNM,美国国立卫生研究院临床中心放射学和成像科学系,马里兰大学巴尔的摩分校计算机科学与电气工程系,美国马里兰州巴尔的摩,宾夕法尼亚大学医院放射学系,9。Kris Thielemans,博士,伦敦大学学院核医学研究所,英国,算法与软件咨询有限公司,英国伦敦
最近的估计显示,在11月至12月,新德里及其周围城市的空气污染原因约为70%。不仅旁遮普邦和哈里亚纳邦,稻草燃烧在其他州都非常迅速。主要燃烧会导致CO2,CO,SOX,NOX,颗粒物和CH4的发射,从而大大增加空气污染和GHGS/碳足迹。悖论是,一方面,我们缺乏动物饲料,生物燃料和肥料,另一方面,浪费或燃烧了大量的作物残留物。这不仅是自然可再生资源的巨大损失,而且与此同时,它还是温室气体(GHG)排放和环境污染的来源。但是,这些残基可以有效地用作覆盖物,用于生产肥料,乙醇,生物柴油,生物炭等,以及在保护农业中。There are knowledge gaps on the economic technologies for in-situ and ex-situ composting of straw, characterization of rice straw of available varieties for various purposes, cost- effective small-scale technologies for bio-energy production, technologies for value addition of paddy straw in view of present day mechanized agriculture and authentic database on contribution of straw burning in air pollution and GHGs/ carbon footprint.
随着全球气候变化的影响逐年加剧,关于太阳辐射改造(SRM)的讨论——通过提高地球对太阳光的反射率来对全球气候系统进行大规模的、人为的操控——正日益成为延缓气候变化的潜在机制。关于SRM相关技术的讨论大多集中在北半球国家,但SRM对南半球国家也具有重要意义,而且那里国家的兴趣也日益浓厚。自2019年以来,作者们一直在南半球国家直接参与SRM研究,参与了与该领域发展相关的研究、研讨会和其他活动,同时也致力于巴基斯坦气候和环境问题的科学和治理工作。本政策简报是2024年1月在巴基斯坦伊斯兰堡举办的一次培训研讨会的成果,在研讨会上,作者们就与巴基斯坦国情相关的SRM问题进行了探讨。作者们概述了SRM面临的治理挑战,并为巴基斯坦气候界成员、民间社会组织以及政策制定者和决策者提供了一个初步框架,帮助他们参与目前已在进行的SRM全球讨论。最后,作者就国家应如何考虑参与这些即将采取的气候干预措施提出了建议。
量子计算机的探索正在如火如荼地展开。在过去十年中,量子计算的前沿领域已经从探索少量子比特设备扩展到开发可行的多量子比特处理器。超导 transmon 量子比特是当今时代的主角之一。通过和谐地结合应用工程与计算机科学和物理学的基础研究,基于 transmon 的量子处理器已经成熟到令人瞩目的水平。它们的应用包括研究物质的拓扑和非平衡状态,有人认为它们已经将我们带入了量子优势时代。然而,建造一台能够解决实际相关问题的量子计算机仍然是一个巨大的挑战。随着该领域以无拘无束的热情发展,我们是否全面了解潜伏的潜在危险的问题变得越来越紧迫。特别是,需要彻底弄清楚,在拥有 O (50) 量子比特的可行量子计算机的情况下,是否会出现与多量子比特性质相关的新的和迄今为止未考虑的障碍。例如,小型设备中量子门的高精度很难在大型处理器中获得。在硬件方面,大型量子计算机提出的独特要求已经催生了量子比特设计、控制和读出的新方法。本论文介绍了一种新颖的、不太实用的多量子比特处理器视角。具体来说,我们通过将局域化和量子混沌理论中的概念应用于多 transmon 阵列,将量子工程和多体物理学领域融合在一起。从多体的角度来看,transmon 架构是相互作用和无序非线性量子振荡器的合成系统。虽然 transmon 之间的一定程度的耦合对于执行基本门操作是必不可少的,但需要与无序(量子比特频率的站点间变化)进行微妙的平衡,以防止局部注入的信息在扩展的多体状态中分散。 Transmon 研究已经建立了不同的模式来应对效率低下(由于耦合小或无序大而导致的门速度慢)和信息丢失(耦合大或无序太小)之间的困境。我们使用当代量子处理器作为蓝图,在精确对角化研究中分析了 transmon 量子计算机的小型实例。仔细研究光谱、多体波函数和量子比特-量子比特相关性以获得实验相关的参数范围,发现一些流行的 transmon 设计方案在接近不可控混沌波动的区域运行。此外,我们在经典极限中建立了混沌的出现与量子混沌特征的出现之间的密切联系。我们的概念补充了传统的少量子比特图像,该图像通常用于优化小规模的设备配置。从我们全新的视角,可以探测到超出这个局部尺度的不稳定机制。这表明,在多体定位领域开发的技术应该成为未来 transmon 处理器工程的一个组成部分。
由于预训练的深度学习模型大量可用,迁移学习在计算机视觉任务中变得至关重要。然而,从多样化的模型池中为特定的下游任务选择最佳的预训练模型仍然是一个挑战。现有的衡量预训练模型可迁移性的方法依赖于编码静态特征和任务标签之间的统计相关性,但它们忽略了微调过程中底层表示动态的影响,导致结果不可靠,尤其是对于自监督模型。在本文中,我们提出了一种名为 PED 的富有洞察力的物理启发方法来应对这些挑战。我们从势能的视角重新定义模型选择的挑战,并直接模拟影响微调动态的相互作用力。通过捕捉动态表示的运动来降低力驱动物理模型中的势能,我们可以获得增强的、更稳定的观察结果来估计可迁移性。在 10 个下游任务和 12 个自监督模型上的实验结果表明,我们的方法可以无缝集成到现有的排名技术中并提高其性能,揭示了其对模型选择任务的有效性以及理解迁移学习机制的潜力。代码可在 https://github.com/lixiaotong97/PED 上找到。
圈量子引力 (LQG) 的基本构成要素是自旋网络,它用于量化 LQG 中的物理时空。最近,利用自旋网络的基本概念提出了新的量子自旋。这一观点重新定义了量子自旋的概念,并引入了约化普朗克常数的新定义。这一观点的含义不仅限于量子引力,还可用于量子力学。利用这一观点,我们提出了对心灵时空的量化。物理时空与心灵时空之间的相似性为从科学和哲学角度研究时空提供了新概念。本文还对物理时空与心灵时空进行了比较研究。