2.1 道路标志检测 ................................................................................................7 2.2 交通监测 ..............................................................................................................10 2.3 路面状况评估 ..............................................................................................12 2.4 几何数据提取与评估 ................................................................................14 2.5 路堤稳定性监测 ......................................................................................16 2.6 车道标记与道路边缘提取 .............................................................................17 2.7 路边物体检测 .............................................................................................22 2.8 视距评估 ......................................................................................................26
8D. 其他考虑事项................... 8-69 8D-1 视距.................................................................................................................. 8-69 8D-2 几何形状....................................................... 8-75 SD-3 排水.................................................................................................................................. 8-76 SD-4 照明.................................................................................................................................. 8-76 SD-4 照明.................................................................................................................................. 8-76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 77 SD-5 障碍物. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-77 8D-6 交叉表面. . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 78 8D- 7 驾驶员教育. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 79 SD-8 执行 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 79
摘要 — 室内定位和情境感知正成为各种应用的两项关键技术。最近,通过采用超宽带 (UWB) 技术,人们已经实现了厘米级精度和低功耗的实时定位系统。自 2015 年以来,Decawave 已生产出商用 UWB 集成电路,利用飞行时间测量技术来估计两个代理之间的距离。这项工作介绍了两台 Decawave 收发器(DW1000 和 2020 年发布的新款 DW3000)之间的性能研究。测试空间包括视距内区域和由 UWB 无线电信号反射到各种障碍物而引起的各种非视距条件。最后,我们分析了不同配置下的功耗,并对两台设备进行了比较。结果表明,两者在 1 米以上的测量范围内具有相似的精度,而考虑到较短的距离,DW3000 的平均性能要好 33.2%。此外,新收发器在实时测量过程中的功耗降低了近 50%,平均值达到 55 mW。索引术语 — 超宽带技术、超宽带通信、物联网、室内定位、功耗
• 战术网络视距 (LoS)、超视距 (BLoS) 和 SATCOM 传输系统,具有嵌入式低拦截概率/低检测概率 (LPI/LPD) 和低利用概率 (LPE) 特性。必须具有各种尺寸、重量和功率 (SWaP) 配置,可以轻松支持安装、拆卸或固定站点操作,而不会损失能力
许多可用的 UAS 可以携带多个传感器有效载荷,从而实现通信情报和电子情报 (COMINT 和 ELINT)、通信中继和雷达系统的组合。无人驾驶车辆使用直接视距数据链路或利用卫星连接的超视距 (BLOS) 链路与地面控制站通信。这种多模式能力允许进行广域搜索和识别其他技术可能无法看到的目标,并可以为载人巡逻艇提供直接支持。
A AAIB 航空事故调查处 AASPA 安圭拉航空港务局 ACAS 机载防撞系统 ADS-B 广播式自动相关监视 AFIS 机场飞行信息服务 AGL 高于地面 AIC 航空信息通告 AIP 航空信息出版物 AIS 航空信息系统 ALARP 尽可能低 AMSL 高于平均海平面 AN(OT)O 空中航行(海外领土)指令 ANSP 空中航行服务提供者 AOC 航空运营人证书 ASSI 国际空中安全支援 ATC 空中交通管制 ATM 空中交通管理 ATPL 航空运输飞行员执照 ATS 空中交通服务 ATSU 空中交通服务单位 ATZ 机场交通区 B BCAA 百慕大民航局 BVIAA 英属维尔京群岛机场管理局 BRLOS 无线电视距外 BVLOS 视距外 C CAACI 开曼群岛民航局 CAT 商业航空运输 CIAA 开曼群岛机场管理局 CPL 商业飞行员执照 CRM机组资源管理 CS 认证规范 CU 指挥单位 C2 指挥与控制 D DA 危险区域 DAA 检测与避免 DfT 英国交通部
L3Harris RASOR 底盘,又名 RARE™(快速适应加固外壳),采用高度创新的增材制造方法,利用各种先进制造技术,例如 3D 打印。RARE 可通过定制模块从 3 个插槽扩展到 12 个插槽,包括 L3Harris 专有技术以及第三方解决方案。各个模块提供广泛的跨域功能,从弹性视距和超视距通信到情报、监视和侦察、指挥和控制、可靠定位、导航和计时以及电子战,全部具有多级安全性。
ANFR 法国国家频率机构 ARCEP 法国邮政电子通信管理局(ARCEP 取代 ART) ART 法国电信管理局(法国监管机构) ATC 自动列车控制 BFWA 宽带固定无线接入 CALM 陆地移动设备通信接入 CBTC 基于通信的列车控制 CEPT 欧洲邮政和电信管理局会议 dBm 相对于 1 Mw 的分贝功率 DCS 数据通信系统 DFS 动态频率选择 DSRC 专用短程通信 ECC 电子通信委员会 EIRP 等效全向辐射功率 ERC 欧洲无线电通信委员会 ERM 电磁兼容性和无线电频谱问题 FSS 固定卫星服务 HAPS 高空平台站 IEEE 电气电子工程师学会 IP 互联网协议 ISM 工业、科学和医疗 ISO 国际标准组织 ITS 智能交通系统 ITS-G5A 频带范围从 5 875 MHz 到 5 905 MHz ITS-G5B 频段范围从 5 855 MHz 到 5 875 MHz ITS-G5C 频段范围从 5 470 MHz 到 5 725 MHz ITS-G5D 频段范围从 5 905 MHz 到 5 925 MHz kbps 千比特每秒 LOS 视距 LPR 液位探测雷达 Mbps 兆比特每秒 MODCOMM MODURBAN 通信系统 MODURBAN 模块化城市导轨系统 NLOS 非视距 OBU 车载单元 QPSK 正交相移键控
摘要 — 在本文中,我们提出了一种基于深度神经网络辅助粒子滤波器 (DePF) 的方法来解决超密集网络中的移动用户 (MU) 联合同步和定位 (sync&loc) 问题。具体而言,DePF 在 MU 和接入点 (AP) 之间部署了一种非对称时间戳交换机制,传统上,该机制为我们提供有关 MU 时钟偏移和偏差的信息。然而,AP 和 MU 之间的距离信息也是交换时间戳所经历的传播延迟所固有的。此外,为了估计接收到的同步数据包的到达角,DePF 利用多信号分类算法,该算法以同步数据包所经历的信道脉冲响应 (CIR) 为输入。CIR 还用于确定链路条件,即视距 (LoS) 或非视距。最后,为了执行联合同步和定位,DePF 利用粒子高斯混合,允许对上述信息进行基于粒子和参数贝叶斯递归滤波 (BRF) 的混合融合,从而联合估计 MU 的位置和时钟参数。模拟结果验证了所提出的算法优于最先进的方案,尤其是基于扩展卡尔曼滤波器和线性化 BRF 的联合同步和定位。特别是,仅利用来自单个 AP 的同步时间戳交换和 CIR,在 90% 的情况下,绝对位置和时钟偏移估计误差分别保持在 1 米和 2 纳秒以下。
L3Harris AN/PRC-163(以前称为 RF-335M-STC)多通道手持无线电是一种多功能、安全的解决方案,可在小巧的外形中提供同时上下梯队连接、跨频带功能以及关键的互操作性和冗余性。两个通道中重叠的 UHF 和 SATCOM 频段可用性为 SATCOM、VHF/UHF 视距或移动自组织网络 (MANET) 应用的任意组合提供了灵活性,包括基于信号的威胁警告/态势感知 (SBTW/SA) 和 ISR 视频接收。