ATSH-RBD-E 2024 年 1 月 8 日 记录备忘录 主题:侦察和监视领导者课程 - 欢迎信 1. 欢迎参加侦察和监视领导者课程!以下信息将设定期望并提供参加课程的初步指导。 2. RSLC 是一门快节奏的课程,充满了体力和精神挑战。在 26 天的课程中,您将接受有关侦察和监视基础知识和各种技术的指导,包括高级陆地导航、信息收集和报告、视距和高频通信、任务规划、插入和提取考虑、规避和恢复、生存以及多种侦察和监视方法。成功完成本课程的学生将通过掌握侦察和监视的基础知识成为更好的士兵和领导者。 3. 您必须以最佳身体和精神状态到达,做好训练准备。我们建议你在 ACFT 上至少能得到 540 分,并在 3 小时内负重 35 磅完成 12 英里的行军。我们还建议你对陆地导航有基本的了解,以确保顺利过渡到我们的高级陆地导航课程。请参考下面链接中的网站,并利用我们提供的培训材料来帮助你做好准备。 4. 参见附件中的车辆识别学习指南。你必须在参加之前打印并学习此材料。请务必携带你的车辆 ID 学习指南,因为它在布局期间将是可检查的项目。 5. 在你的报告日期的 12:00 时,你将在位于佐治亚州 Fort Moore 霍克斯大道 10654 号 4713 号楼前的有盖培训区内进行培训。所需文件的清单和其他协调说明可以在 RSLC 网站或 RSLC Facebook 页面上找到。报告日期之前的提前报告是不允许的。a. RSLC 网站:https://www.moore.army.mil/infantry/ARTB/RSLC/ b. RSLC Facebook 页面:https://www.facebook.com/ReconSurvLeaderCourse
“ALS” 也为未来的设计带来了新的和扩展的功能。例如,有源频率选择表面材料 (AFSS) 由一层非常薄的半导体组成,该半导体层足够灵活,可以应用于飞机外壳。AFSS 将记录和识别传入的雷达信号,并发送定制的回复,使原始信号无效。其他形式的主动涂层甚至可以抑制或“隐藏”红外和光学特征。目前,亚音速飞翼被认为是隐形飞机的最佳形式。这种设计能够实现的功能显然非常适合远程战略轰炸机的角色。美国空军似乎对 B-2 SPIRIT 非常满意,以至于选择了类似的设计,即 B-21 RAIDER,作为其继任者。战斗机或战斗轰炸机则不然。因此,F-22 和 F-35 与其前身 F-15 和 F-16 的相似性要高于 B-2 与 B-52 的相似性。尽管第五代战斗机和战斗轰炸机的设计似乎为了更好的灵活性而牺牲了隐身性,但 F-22 和 F-35 都因无法在视距空对空作战中击败第四代对手而受到批评。不管这种说法有多合理,它仍然表明高气动性能和极低的可观测性是相互竞争的设计原则。当避免早期雷达探测比高敏捷性更重要时,隐形战斗机处于最佳状态,即在超视距空对空作战或穿透复杂的综合防空系统时。战斗机和战斗轰炸机所需的高敏捷性也意味着它们的整体尺寸必须相对较小。非隐形设计通过将大部分燃料和武器作为外部存储来弥补这一点。但是,外部存储和隐形是不相容的。为了实现隐身,飞机必须在内部携带燃料和武器,这会减少它们的航程,并减少一次出击可以击中的目标数量。这只能通过改变空中作战的总体性质和组成来改善。使用“武库飞机”增加可用武器的数量,使用加油机扩大射程和续航能力,将提供一些解决方案,但如果这些飞机的隐身性不如它们所支持的飞机,也会带来新的挑战。目前的想法似乎集中在使用隐形飞机作为一种“先锋”,突破对手的防御,并利用其传感器和网络能力来发现、识别和
研究机会:“舰载机器人维修和维护科学与技术” I. 简介 本公告描述了海军和海军陆战队科学与技术长期广泛机构公告 N00014-23-S-B001 下名为“无人水面舰艇和小型战斗艇”的技术领域,可在 https://www.nre.navy.mil/work-with-us/funding-opportunities/announcements 上找到。提案的提交、评估和合同的签订将按照上述长期广泛机构公告中所述进行。发布此公告的目的是引起科学界对以下方面的关注:(1) 待研究领域、(2) 在 2023 年 4 月 4 日海军海空空间会议和展览会上的海军小型企业展示会上发表演讲的机会,并有机会直接与项目官员交谈,与对此领域感兴趣的人进行对话,以及 (3) 提交白皮书和完整提案的计划时间表。II. 主题描述提议的主题将探索和利用机器人技术在无人值守、任务持续时间以周或月为单位的海上船舶上进行维修和维护。该计划将致力于开发用于对船上系统进行维修的机器人技术。背景:海军研究办公室 (ONR) 与小企业计划办公室 (OSBP) 联合希望收到有关探索和利用机器人技术在无人值守、任务持续时间以周或月为单位的海上船舶上进行维修和维护的提案。海军正在开发中型和大型无人水面舰艇 (USV),这些舰艇将连续运行数周或数月,无需人员登船,并且仅通过低带宽的视距通信链路与远程操作员进行通信。虽然此类舰艇的机动自主性已取得重大进展,但实现长达数月的任务目标的一个重大障碍是需要在这些延长的任务期间进行维修和维护。如今,已有或正在开发可以处理可能发生的一些故障的方法。这些方法包括,例如,监控船上机械和电气系统数据流的软件,以诊断故障并重新配置受影响的系统以减轻故障的影响;以及设计有足够冗余或容量以提供必要舰艇续航能力的船上系统。后者的例子包括多个发电机和增加的油底壳容量。这些方法需要
C. 当前管理小型 UAS 的法定和监管结构 D. 通过制定规则将小型 UAS 操作整合到 NAS 中 E. 相关的 UAS 集成举措 III.最终规则讨论 A.渐进式方法和豁免 B.适用法定框架讨论 C. 适用性 1.运输财产以获得补偿(航空公司运营) 2. 国际运营和外国拥有的飞机 3.公共飞机运营 4.模型飞机 5.系留气球、风筝、业余火箭和无人自由气球 6.UAS 的当前处理和第 333 条豁免持有人的祖父条款 D. 定义 1.控制站 2.矫正镜片 3.无人机 4.小型无人机 5.小型无人机系统 (小型 UAS) 6.其他定义 E. 操作规则 1.遥控飞行员指挥 a. 术语 b.遥控飞行员指挥 c. 飞行员认证要求 d. 遥控飞行员指挥的紧急权力 2.视距避让和能见度要求 a.视线 b.视觉观察员 i.视觉观察员的定义 ii.使用视觉观察员时的操作要求 iii.可选使用视觉观察员 iv.无需飞行员认证或视觉观察员培训 c. 额外的能见度要求 i.白天作业 ii。天气/能见度最低值 iii。让行权 d。 额外技术/显眼性要求 i。 ADS-B、应答器和 TCAS ii。无线电设备 iii。照明 iv。显眼性 3。遏制和失去积极控制 a。密闭作业区域边界 i。 水平边界和移动车辆 ii。垂直边界(最大高度) b。 减轻失去积极控制的风险 i。最大速度 ii。操作多架无人机 iii。微型 UAS iv。飞越人员 vs. 飞行前简报 vi.飞行前评估操作区域并确保飞机不会造成不当危险 1.飞行前评估操作环境 2.失去控制时造成不当危险 vii.自动化
添加 Superpave 混合设计等级。所有沥青路面均使用公制 Superpave 命名法,例如 9.5 mm Superpave、12.5 mm Superpave。ο • 典型路段应显示适用于每个路段的站点。站点不应重叠或跳过。应在适用时显示超高路段。每层路面都应标有深度和材料类型。• 在拓宽和重建项目中,典型路段应指示坡度或“匹配现有坡度”。• 检查前坡、沟渠深度、总体尺寸等。ο 如果有一条没有路缘的人行道,则人行道应距离道路至少 5 英尺。• 所有带有人行道的项目都应提供路缘切割坡道。索引应根据需要包括 GA 特殊细节 A1、A2、A3 和 A4。路缘切割坡道应按施工计划中的类型显示和标记。所有要求的位置都应显示可检测的警告。 • 路缘和排水沟部分应标明类型和尺寸。超高路段高侧的路缘和排水沟应与道路的方向和坡度相同。 • 检查所有注释和细节的准确性和必要性 • 人行道和景观美化的安装可以在地役权上进行。挖填斜坡、渠道和沟渠可以在地役权上建造。 • 残疾人停车位的位置应在计划中显示。放置残疾人停车位时,请记住通道需要可通往人行道,通常通过使用不能占用任何通道区域的路缘坡道。 • 人行横道 20 英尺范围内没有停车位。 • 闪光信号、停车标志、让行标志或交通控制信号 30 英尺范围内没有停车位。 • 检查是否需要增加减速车道或加速车道,要求 50' 锥度和 150' 行车道。 • 还要检查视距问题。 • 住宅检查是否需要任何类型的车道涵洞管道,通常最小 18 英寸。 • 车道入口的转弯半径因县而异,工业区为 35 英尺,商业区为 25 英尺,住宅区为 5 英尺 • 所有新入口都必须有 8 英寸厚的混凝土护堤,3500 PSI 覆盖在压实的路基上
图 1.雷达的电磁频谱使用情况(来自 [3])........................................................2 图 2.距离模糊的发生(来自 [3])......................................................................4 图 3.雷达回波([9] 之后).........................................................................................9 图 4.脉冲中的无线电波形(来自 [3]).........................................................................10 图 5.信号强度与目标范围(来自 [3]) ................................................................11 图 6。零到零和 3dB 波束宽度(来自 [3]) ..............................................................13 图 7。天线孔径尺寸(来自 [3]) ......................................................................14 图 8。线性阵列的零到零波束宽度(来自 [3]) .............................................................14 图 9。锥形照明(来自 [3]) .............................................................................15 图 10。大气衰减([11] 之后) .............................................................................16 图 11。波的压缩(来自 [3]) .............................................................................18 图 12。相对地面和机载平台的运动(来自 [3])......................................................................19 图 13。多普勒雷达的类型(来自 [4]).............................................................................20 图 14。消除模糊返回(来自 [3]).............................................................................24 图 15。视距(来自 [3]).........................................................................................25 图 16。PRF Vs.距离(来自 [3]).........................................................................................26 图 17。速度模糊([16] 之后).............................................................................27 图 18。最大。明确多普勒,λ =1 cm(来自 [3])..............................................27 图 19。最大值。明确多普勒,λ =3 cm(来自 [3])..............................................28 图 20。最大值。明确多普勒,λ =10 cm(来自 [3])..............................................28 图 21。具有最大值的不同 PRF 类别。目标范围(来自 [3])........................................30 图 22。由于高 PRF 而形成的无杂波区域(来自 [3]).............................................32 图 23。明确范围与高 PRF 模式下的旁瓣回波(来自 [3]) ......................................................................32 图 24。AN/APG-70(来自 [20]) ......................................................................................34 图 25。AN/APG-68(来自 [22]) ......................................................................................35 图 26。AN/APG-73(来自 [24]) ......................................................................................35 图 27。明确速度(来自 [4]) .............................................................................37 图 28。距离剖面(来自 [3]) .............................................................................................38 图 29。多普勒剖面(来自 [3]) .............................................................................................39 图 30。移除 MLC 后的距离剖面(来自 [3])................................................................39 图 31。八分之三波形([3] 之后)..............................................................40 图 32。使用 3:8 的目标检测(来自 [3]).........................................................................41 图 33。GMT 抑制(来自 [3]).........................................................................................42 图 34。近距离旁瓣杂波(来自 [3]).........................................................................42 图 35。理想模糊函数([15] 之后).........................................................................45 图 36。相干脉冲串,N=5(来自 [25]).........................................................................46 图 37。相干脉冲串的模糊轮廓图................................................47 图 38。PRF= 30 kHz N=15 脉冲占空比= 0.2..............................................48 图 39。PRF= 10 kHz N=15 脉冲占空比= 0.2..............................................48 图 40。PRF= 30 和 10 kHz 的轮廓比较 .............................................................49 图 41。PRF= 30 和 10 kHz 的椭圆比较 .............................................................49 图 42。模糊图,N=15 脉冲,PRF= 30 kHz .............................................................53
分区要求承诺 PDF 02-ZRC-E20XXXXXX 外展信息通知列表 PDF、Microsoft Word 或 Excel 03-NLIST-E20XXXXXX 申请通知函 PDF 或 Microsoft Word 04-NLTR-E20XXXXXX 提交前会议信息 PDF 05-PMTG-E20XXXXXX 标志张贴信息 PDF 06-SIGN-E20XXXXXX(-LOC) 所需规划图 混合收入住房社区规划图矢量 PDF(单独页面) 07-MIHC-E20XXXXXX-00X 景观和照明规划图矢量 PDF(单独页面) 08-LL-E20XXXXXX-00X 建筑图矢量 PDF(单独页面) 09-ARCH-E20XXXXXX-00X 森林保护规划图矢量 PDF(单独页面) 10-FCP-E20XXXXXX-00X 所需支持功能信息/图纸 树木保存规划图矢量 PDF (单页) 10-TSP-E20XXXXXX-00X 已批准的 NRI/FSD 或豁免计划 PDF 11-NRI-420XXXXX(0/E) 森林保护计划豁免函 PDF 11-FCPEX-420XXXXXE 雨水管理概念计划矢量图 PDF (单页) 12-(SWM/WQP)-E20XXXXXX-00X 雨水管理批准函 PDF 12-(SWML/WQPL)-E20XXXXXX 雨水管理概念收据 PDF 12-SWMR-E20XXXXXX 消防部门出入计划图纸矢量图 PDF (单页) 13-FDA-E20XXXXXX-00X 带计算的雨水排水分析图纸矢量图 PDF (单页) 14-SD-E20XXXXXX-00X 概念沉积物控制计划矢量图 PDF (单页) 15-SED-E20XXXXXX-00X 交通影响声明/交通研究 PDF 16-(TIS/TS)-E20XXXXXX 视距评估表 PDF 17-SIGHT-E20XXXXXX WSSC 审查清单和收据 PDF 18-WSSC-E20XXXXXX 彩色编码公用设施计划(如果单独提供)矢量 PDF(单独页面) 19-UTIL-E20XXXXXX-00X 局部区域图(如果单独提供)PDF 20-LOCAL-E20XXXXXX 补充图纸和文件(如适用则必需)潜在项目树木差异理由 PDF 或 Microsoft Word 10-VAR-E20XXXXXX 雨水管理计划豁免函 PDF 12-SWMEX-E20XXXXXX SPA 水质计划:不透水表面图纸矢量 PDF(单独页面) 12-IMP-E20XXXXXX-00X 其他水质计划相关材料 PDF或 Microsoft Word 12-OWQP-E20XXXXXX 交通缓解协议草案 PDF 或 Microsoft Word 16-TMAG-E20XXXXXX 现有记录地籍图 PDF 22-PLAT-E20XXXXXX 法律文件(法律限制、契约、地役权等)PDF 25-LEGAL-E20XXXXXX 交通规划矢量图 PDF 26-CIRC-E20XXXXXX 政府机构协议 PDF 27-GOVAA-E20XXXXXX 可选方法契约 PDF 28-OMCOV-E20XXXXXX 噪音研究 PDF 32-NOISE-E20XXXXXX 先前批准的上诉委员会意见 PDF 30-BOAOP-XXXXX* 批准的有条件使用/特殊例外计划 PDF 30-(CU/SE)-XXXXX* 理事会分区决议 PDF 30-ZONRES-XXXXX** 分区规划 PDF 30-ZON-XXXXX**
无人机系统 (UAS) 的运行数量、技术复杂性和精密性正在迅速增加。这些新型飞机越来越受欢迎,给美国运输部 (Department) 和联邦航空管理局 (FAA) 带来了许多监管和技术挑战。本路线图旨在满足 2012 年联邦航空管理局现代化和改革法案 (FMRA) 第 332 节的要求。它提供了迄今为止实现 UAS 集成的进展、我们继续面临的挑战以及应对这些挑战的近期战略。运输部将 UAS 完全整合到国家空域系统 (NAS) 的愿景是让 UAS 与有人驾驶飞机和谐地并肩运行,占据同一空域并使用许多相同的空中交通管理 (ATM) 系统和程序。这一愿景超越了调节实践,后者在很大程度上依赖于操作隔离来维护系统安全。在我们努力实现这一愿景的过程中,必须逐步将 UAS 引入 NAS,以确保空中和地面的人员和财产安全。本路线图的第一部分概述了在整合初期所取得的巨大进步。随着前两项 UAS 规则的发布,该部门在监管方面迈出了重要的一步。2015 年 12 月,发布了《小型无人机注册和标记要求临时最终规则》,适用于重量超过 0.55 磅(250 克)且少于 55 磅的 UAS。2016 年 6 月,发布了小型 UAS 规则(联邦法规 (CFR) 第 14 篇第 107 部分),并于 2016 年 8 月生效。该规则允许在视距内(VLOS)进行常规小型 UAS 操作。在小型 UAS 规则最终确定之前,FAA 仅在个案基础上授权 UAS 运行,允许商业 UAS 在特定的低风险情况下运行。本路线图的第二部分概述了该部门所依赖的政府和行业之间至关重要的关系,以确保其 UAS 集成工作协调一致。无人机咨询委员会 (DAC) 和无人机安全小组 (UAST) 以及多个航空规则制定委员会 (ARC) 的建议为 FAA 的 UAS 集成活动提供了重要意见。解决我们共同挑战所需的所有工作都需要地方、部落州、国家和国际层面的合作伙伴以及 UAS 行业和利益相关者社区的合作伙伴之间的合作。该部门对 UAS 安全高效集成的承诺还需要解决本路线图第三部分所述的几个关键挑战,以使这项新兴技术能够安全地发挥其全部潜力。在 UAS 超视距 (BVLOS) 操作成为常规操作之前,必须解决确保无人机 (UA) 与其他飞机保持安全距离以及飞行员保持对 UAS 的控制并始终了解其位置的技术问题。还必须做大量工作来
房间:106 Spalding 实验室 检测和操纵压缩光用于量子计量和通信 Esme Knabe 导师:Maria Spiropulu 压缩光是一种亚泊松非经典光状态,在精密测量和量子通信等领域有广泛的应用。由于与现实世界系统的相关性,开发能够与现有光学和光子设备集成的压缩光过程至关重要。为此,该项目旨在展示使用桌面设备和集成光子学测量和操纵压缩光的相空间。这项工作的一些贡献包括但不限于压缩态的相位锁定以实现确定性相位旋转、通过将相干光与压缩光混合来产生位移压缩态、以及优化压缩光实际量子应用实验。通过量子电路假设搜索,使用量子生成对抗网络生成逼真的 LHC QCD 模拟 Yiyi Cai 导师:Maria Spiropulu、Jean-Roch Vlimant 和 Samantha Davis 经典生成模型已被证明有望成为替代生成模型,可以取代部分或全部对撞机数据的详细模拟链,尤其是在 LHC 中。由于初态希尔伯特空间大小的指数缩放和量子系统的内在随机性,量子-经典混合生成模型可以提供更高的精度和性能。这种方法的一个局限性是可以任意选择所用量子电路的假设。我们研究了量子-经典生成对抗模型的性能,以使用变分量子电路作为模型的生成部分来模拟 LHC 上强子喷流的特征,并进一步搜索电路假设空间以找到性能最佳的电路。我们对强子喷流数据集中量子-经典混合生成对抗模型的性能得出结论,并对此类方法在 LHC 上的可用性进行了展望。时间箱量子密钥分发密钥交换 Ismail Elmengad 导师:Maria Spiropulu 和 Anthony LaTorre 量子密钥分发 (QKD) 使双方 Alice 和 Bob 能够实现信息论安全通信。这意味着无论多少计算资源都无法让第三方访问 Alice 和 Bob 的通信。量子比特可以用几种方式编码。该项目将使用时间箱协议来交换量子比特。光子要么在时间基础上准备,它们落入早期或晚期时间箱,类似于经典信息中的 0 和 1,要么在相位基础上准备,这是早期和晚期状态的叠加。通过表征影响量子比特错误率 (QBER) 的各种因素,例如暗计数、脉冲宽度、QBER 稳定性,相位调制等。我们希望通过光纤介质实现任意长度的有效密钥交换。QKD 是通过光纤和视距自由空间环境进行安全通信的一个令人兴奋的前景。用于量子网络的时间箱编码光子量子比特的 Greenberger-Horne-Zeilinger (GHZ) 状态的生成 Nassim Tavakoli 导师:Maria Spiropulu、Samantha Davis、Raju Valivarthi 和 Nikolai Lauk 量子纠缠是量子信息应用(如量子计算、通信和计量)的重要资源,有望实现计算加速、信息论安全通信和增强的传感能力。该项目将重点研究由三个纠缠粒子组成的 GHZ 状态。我们旨在使用光纤耦合元件、体非线性和最先进的超导纳米线单光子探测器(SNSPD)生成时间箱量子比特的 GHZ 状态。纠缠光子可以通过自发参数下变频和连续波泵浦光后选择产生。这些“飞行量子比特”通过基于到达时间的时间箱技术传输编码的信息。这一演示将是迈向现实世界量子网络的重要一步,这是一种更有效地生成量子隐形传态所需状态的方法。
仅供办公室使用 ( ) 首次检查 ( ) 复查计划集 ( ) 水文与水力计算(初步) 保证金估算 $ 计划审查费 $ ( ) 签名与划线计划 ( ) 结构计算 分配给: 说明:在每个项目旁边使用 或“x”表示您遵守,或使用 N/A 表示不适用。任何例外请求都应以书面形式提出并随附于此。 I. 一般规定 1. 包括适用的一般说明(POL:21)。 2. 使用 24" X 36" 纸张尺寸,包括边框 (96-2.208)。 3. 显示标题栏/比例/北箭头 (96.2.208)。 4. 能够微缩胶片复制的计划 - 最小 1/8 英寸字体。(96-2.208)。 5. 包含工程师姓名、编号、到期日期和签名 (96- 2.204)。6. 展示附近地图(必须可微缩胶卷)。7. 包含 3 张或更多张图纸的图纸索引和关键地图 (96-2.204)。8. 公共工程部门检查范围在平面图、典型剖面图和债券估算中清晰显示。(特别是在 LUP 和 DP 等中)9. 展示路灯位置/图例/PG&E 签名 (96-6.214)。如果需要 10 盏或更多路灯,则灯将显示在整个开发项目的连续平面图上。10. 已提交合并到照明区的请求。(附有地图和边界和范围描述以及合并费用。)(96-6.602 和 6.604)。11. 公共工程部门准备的路缘坡度计划(如果有)已纳入改进计划并被证实是充分的。 12. 路缘坡度平面图由工程师准备,供公共工程部门审查,横截面积最大间隔为 50 英尺,沿道路正面延伸至工作范围外至少 150 英尺。显示分段边界外 500 英尺的剖面线、中心线和 EP。13. 标志和划线平面图以及改进平面图中包括的现有划线。14. 每张图纸上均显示开发编号 (SUB、MS、LUP、DP)。15. 显示消防区签名,用于入口和消防栓位置 (96-14.004)。16. 验证场外工作的土地权 (所有权报告、已记录的地役权、进入权等)17. 需要从其他机构 (渔业和野生动物管理局、加州交通部、陆军工程兵团、防洪局等) 获得许可证18. 提交所有场外工作的进入权以供审查 (96-4.204)。 19. 已提交公共通行权范围内的景观美化计划以供审查。 20. 水区运河沿线需要设置围栏(918-2.006)。 21. 对于坡度小于 1% 的道路,铺设前需要进行水质检测。 22. 提供带注释的批准条件(解释如何满足每个 COA)。 II. 道路 A. 典型路段 1. 根据 R 值标明结构路段(98-8.204)。 2. 标明路缘类型(96-2.204 和 CA 70、CA 71)。 3. 显示通行权和街道宽度尺寸。 4. 对于粘性土壤,从 R/W 线开始显示 2:1 的最大挖填坡度,对于沙质土壤,最大坡度为 4:1 - 土壤报告核实例外情况。 5. 标明路拱坡度(98-8.208)。 6.所示的人行道 (96-8.402)。7. 按照 Caltrans 标准 (96-8.2) 所示的行人或自行车设施。8. 所示的路面设计图,其中显示了 TI 值以供审查。B. 平面图 1. 在所有曲线上均显示了曲率半径 (98-6.016)。2. 所示的 20 英尺路缘回转半径 (96-12.404)(主干道和工业街道为 30 英尺)。3. 私家道路交叉口的最小路缘开口为 24 英尺。4. 水平曲线和视距按照公路设计手册设计。