指示:在巡回演出的每个站点,使用下面的“ bank”一词匹配新词汇单词。在每个站点结束时,反思您对我们的调查问题的了解。
抗生素的滥用使用给这种类型的药物带来了抗药性的威胁,使其被认为是普遍的疾病对公共卫生的威胁。由于每种微生物都有避免迫在眉睫的风险的防御策略,因此这些药物针对的微生物将找到捍卫自己免受行动的方法。抗生素耐药性可以伴随着对重金属的耐药性,这进一步使这种令人震惊的情况恶化。检查哪种基因与这两种类型的抗性有关,对于旨在减轻引起的负面影响和开发新药物的研究非常重要。本研究调查了来自瓜纳巴拉湾(RJ)和巴西湖Airo湖(AM)沉积物中对抗生素和金属的微生物耐药性谱。重金属和抗生素耐药性在两个位置的共存都强调了抗性共选择的重要性,这可能导致多药耐药细菌。重金属在环境中的持久性及其对微生物群落施加选择性压力的能力代表了对公共卫生的重大威胁。因此,实施有效的重金属污染控制措施对于减轻与抗菌耐药性相关的风险至关重要。palavras-chaves:抵抗,重金属,抗生素,细菌,airo湖
在本文中,我们提出了 Skip-Plan,一种用于教学视频中程序规划的压缩动作空间学习方法。当前的程序规划方法都遵循每个时间步的状态-动作对预测并相邻地生成动作。虽然它符合人类的直觉,但这种方法始终难以应对高维状态监督和动作序列的错误积累。在这项工作中,我们将程序规划问题抽象为数学链模型。通过跳过动作链中不确定的节点和边,我们以两种方式将长而复杂的序列函数转换为短而可靠的序列函数。首先,我们跳过所有中间状态监督,只关注动作预测。其次,我们通过跳过不可靠的中间动作将相对较长的链分解为多个短的子链。通过这种方式,我们的模型在压缩动作空间中探索动作序列内各种可靠的子关系。大量实验表明,Skip-Plan 在程序规划的 CrossTask 和 COIN 基准测试中实现了最先进的性能。
简介:慢性心力衰竭导致许多患者住院,尤其是那些年老且不遵守治疗 1 的患者。这种住院通常可以通过前几周体重增加 2 和外周水肿增加来预测。对于不遵守每日体重记录的患者,我们假设从零依从性全自动远程监控解决方案中收集可靠的数据以评估外周水肿将减少住院并改善护理。
2021 年 12 月 31 日——全动态视频 (FMV) 中的人工智能用于各种运营环境中的决策支持和业务关键型工作流程的自动化。
1。一种自我监督的模型登录方法,仅取决于正面匹配对以改善面部嵌入。2。面部聚类的基于深度学习的相似性度量,该指标会自动适应给定模型的学习嵌入空间。3。不需要任何用户输入参数的全自动视频面聚类算法。4。发布电影脸聚类基准数据集,称为MoviefaceCluster,该数据集提供了电影域中存在的极端挑战的面部聚类场景。
根据 2016/679 号条例 (EU) 第 13 和 14 条规定的视频监控信息,Sicilbanca Credito Cooperativo Italiano - Società Cooperativa(注册办事处位于卡尔塔尼塞塔 Via Francesco Crispi 25,CF 01438930859 PI 02529020220,卡尔塔尼塞塔公司注册号为 70559)(以下简称“公司”或“所有者”)希望通过本文件(“信息”)向您告知处理您的个人数据的目的和方法,以及 2016/679 号条例 (EU) 关于保护自然人、处理个人数据及其自由流通(“GDPR”)赋予您的权利。 1 与视频监控相关的处理目的 数据控制者可能会处理与场所内进行的视频录制相关的您的个人数据。通过视频监控手段获取的个人数据的处理旨在保护客户、公司人员和访问这些数据的个人的安全,以及保护公司资产免遭可能的侵犯、盗窃、抢劫或破坏行为。使用摄像机的法律基础是合法利益。摄像机的放置位置将拍摄范围限制在可能受到公司组织外部个人的非法或其他有害行为风险的区域。在某些情况下,所检测到的图像会被记录并存储一段时间,以达到上述目的,并且在任何情况下,存储时间不超过一周,除非担保人关于保护个人数据的适用规定允许更长的期限,或者可能需要满足司法机关或司法警察对正在进行的调查活动的具体要求。在预期的保留期结束时,记录的图像将从相关的电子、计算机或磁性媒体中删除。检测和记录是在不拦截通信或对话的情况下进行的,并且不会将图像与可以识别相关方的其他元素交织在一起。进入数据控制者的场所需要强制对相关方进行视频记录。反对执行拍摄将导致公司无法跟进您的合同前/合同中的要求。 2 视频录像传输的对象(接收者) 录制的图像存储在电子或磁性媒体上,只能由公司专门指定的人员和外部公司进行处理,作为数据控制者,他们合作维护系统并开展私人监视活动: - Zabut investigazioni di Gulotta Matteo,总部位于 Sambuca di Sicilia via Mulè c.le Salvato n.6。 - 2858 Security srl,注册办事处位于 Misterbianco (ct) via Carlo Marx 57。 - Secur Point srl,注册办事处位于 S. Cataldo (cl), via E. Tricomi 11。 - OSTI di Vincenzo Uricolo,注册办事处位于 S. Margherita di Belice (ag),partment 156 lot 8。根据司法机关或司法警察的命令,图像还会在数据控制者结构之外进行传达和传播。 3 利益相关方的权利 关于本通知中描述的处理,作为利益相关方,您可以
我们提出了一种新颖的视频异常检测方法:我们将从视频中提取的特征向量视为具有固定分布的随机变量的重新释放,并用神经网络对此分布进行建模。这使我们能够通过阈值估计估计测试视频的可能性并检测视频异常。我们使用DE-NONISE分数匹配的修改来训练视频异常检测器,该方法将训练数据注射噪声以促进建模其分布。为了消除液体高参数的选择,我们对噪声噪声级别的噪声特征的分布进行了建模,并引入了常规化器,该定期用器倾向于将模型与不同级别的噪声保持一致。在测试时,我们将多个噪声尺度的异常指示与高斯混合模型相结合。运行我们的视频异常检测器会引起最小的延迟,因为推理需要仅提取特征并通过浅神经网络和高斯混合模型将其前向传播。我们在五个流行的视频异常检测台上的典范表明了以对象为中心和以框架为中心的设置中的最先进的性能。
在本文中,我们提出了RSTAB,这是视频稳定框架的新型框架,该框架通过音量渲染整合了3D多帧融合。与传统方法背道而驰,我们引入了一个3D多框架透视图,以进行稳定的图像,从而解决了全框架生成的挑战,同时保存结构。我们的RSTAB框架的核心在于S Tabilized R Endering(SR),该卷渲染模块,在3D空间中融合了多帧信息。具体来说,SR涉及通过投影从多个帧中旋转的特征和颜色,将它们融合到描述符中以呈现稳定的图像。然而,扭曲的信息的精度取决于降低的准确性,这是受染色体区域显着影响的因素。为了响应,我们介绍了a daptive r ay r ange(arr)模块以整合深度先验,并自适应地定义了投影过程的采样范围。在方面上,我们提出了以光流的光流限制的限制,以进行精确的颜色,以实现精确的颜色。多亏了这三个模块,我们的rstab示例表现出了卓越的性能,与以前的视野(FOV),图像质量和视频稳定性相比,各种数据集的稳定器相比。
