电磁辐射的性质,光电效应,氢原子的光谱,氢原子的玻尔模型 - 其假设,电子能量与不同轨道半径关系的推导,玻尔模型的局限性,物质的二重性质,德布罗意关系,海森堡不确定性原理,量子力学的基本概念,原子的量子力学模型及其重要特征,原子轨道作为单电子波函数的概念,1s 和 2s 轨道的 - 和 -2 随 r 的变化,各种量子数(主量子数、角动量量子数和磁量子数)及其意义,s、p 和 d 轨道的形状,电子自旋和自旋量子数,轨道中电子填充规则 - 构建原理,泡利不相容原理和洪特规则,元素的电子排布以及半满和全满轨道的额外稳定性。
课程简介:本课程介绍量子力学的基础,特别关注量子系统控制的基本原理。量子力学的实验基础。叠加原理、薛定谔方程、特征值和时间相关问题、波包、相干态;不确定性原理。一维问题:双阱势、隧穿和共振隧穿;WKB 近似。厄米算子和期望值;时间演化和汉密尔顿量、交换规则、微扰理论、转移矩阵和变分方法。晶体、布洛赫定理、超晶格。角动量、自旋、泡利矩阵和泡利方程。光与二能级系统的相干相互作用。电磁场的量化、自发和受激发射;腔 QED 元素;量子比特、纠缠、隐形传态、贝尔不等式。
原子和固态自旋集合是有前途的量子技术平台,但实际架构无法解析单个自旋。不可解析的自旋集合的状态必须遵循置换不变性条件,但目前尚不清楚生成一般置换不变 (PI) 状态的方法。在这项工作中,我们开发了一种系统策略来生成任意 PI 状态。我们的协议首先涉及用工程耗散填充特定的有效角动量状态,然后通过改进的 Law-Eberly 方案创建叠加。我们说明了如何通过现实的能级结构和相互作用来设计所需的耗散。我们还讨论了可能限制实际状态生成效率的情况,并提出了脉冲耗散策略来解决这些问题。我们的协议解锁了以前无法访问的自旋集合状态,这可能有利于量子技术,例如更强大的量子存储器。
在提供课程时,将向学生提供课程的课程概述。课程将根据拉合尔旁遮普大学通知的课程指南进行。CORE COURSES (Credits = 89) Phys 1101 ELEMENTARY MECHANICS (CR3) Prerequisite None Vector derivatives and operations, divergence theorem, Stokes' theorem, particle dynamics with emphasis on effect of frictional and drag forces on motion, non-inertial frames and pseudo forces, work-energy theorem, conservative and non-conservative forces, two particle and many-particle systems, centre of固体物体的质量,动量变化可变质量系统。质量参考框架中的碰撞,旋转动力学,重点是平行轴定理,各种形状的身体惯性矩,旋转和翻译运动的结合。角动量,旋转对象的角速度和稳定性,球形质量分布的重力效应,开普勒的行星运动定律。建议:
最大速度下的角动量 Nms 4 至 12 最大速度下的输出扭矩 Nm .055 最大扭矩和速度下的峰值功率 瓦 <80 最大速度下的功率保持 瓦 <15 电源总线电压 伏 14 至 23 轮毂速度 rpm 6000 质量 kg 3.6 至 5.0 外径 mm 267 高度 mm 120 集成电子元件 是/否 是 寿命要求 年 >10 辐射硬度 krad(Si) 300 零件筛选等级 S 轴承尺寸 R4 工作温度范围 摄氏度-低度 -15 摄氏度-高度 +60 振动 Grms 19.8 电机类型 交流/直流 直流 接口 模拟/数字 模拟 静态不平衡 gm-cm <0.2* 动态不平衡 gm-cm 2 <3.1*
本章我们将研究自然界满足库仑相互作用的两种途径。在传统超导体中,电子之间产生吸引力是因为电子周围的离子晶格产生的正屏蔽电荷在电子离开后很长时间内仍然存在。这个过程首先导致电子之间产生短时间的排斥,随后会产生延迟吸引力,从而驱动 s 波配对。然而,自 20 世纪 80 年代以来,物理学家对各向异性超导体越来越着迷。在这些系统中,驱动配对的是费米子之间的排斥相互作用。发生配对的机制是通过对波函数中节点的发展——通常是通过形成更高角动量的库珀对。这种物理的两个经典例子是超流体 3 He 的 p 波对和铜氧化物高温超导体的 d 波对。