以色列代表带状Newt(Ommatotriton Vittatus)分布的南部限制。O. vittatus的生命周期包括几个不同的阶段:卵,水生幼虫,陆生期和水生生殖相。我们使用mRNA-seq研究了生命周期中基因表达的差异和带状NEW的过渡。我们确定了在3组之间的成对比较之一中差异表达的〜10 k基因:1-陆生new(男性和女性),2-水生new(男性和女性),3-变质前的水生幼虫。通过主成分分析(PCA)明确定义了组。最大的区别是水生纽(男性和女性)和水生幼虫:〜7.4 k de Genes。是水生和陆地表型之间的〜2.4 K基因。其中包括在肾功能中具有已知作用的著名候选者(泌尿蛋白同源物与水生生活方式密切相关),组织结构(角蛋白)和甲状腺激素信号调节剂DUOXA1。在确定的DE基因中所代表过多的其他发育和代谢途径包括“表皮发育”,“神经系统发育”,“核苷酸 - 糖生物合成”。总体而言,带状NEW的变形和环境转变都涉及广泛的转录组重塑,涉及发育,代谢和细胞途径。了解这些途径和单个基因的作用对于研究栖息地之间的过渡,尤其是受气候变化影响的栖息地之间的作用。此外,纽特的表型柔韧性和基因表达的基本调节可以揭示陆生脊椎动物的进化。
气管腺样囊性癌最常见于 40 至 50 岁年龄段 [5–7]。男性发病率是女性的 2 至 4 倍,主要发病于 60 至 70 岁年龄段 [2, 5–7]。该肿瘤的病因不明,与鳞状细胞癌不同,它与吸烟无关 [5, 6, 8]。该肿瘤起源于气管黏膜下膜的小涎腺和浆液腺,ACC 的形态学特征与原发性涎腺肿瘤相符 [9]。从宏观上看,ACC 常常生长为外生性肿瘤,导致气管管腔变窄 [2]。形态学表现为特征性,有两种类型的细胞:导管细胞,胞浆稀少,角核深染,细胞角蛋白 (CK7) 染色阳性;扁平肌上皮细胞,肌上皮标志物 (p63、SMA、钙调蛋白) 染色阳性。免疫组织化学突出的双相外观对于鉴别诊断至关重要。细胞形成筛状、管状和实体图案 [10]。实体区域的百分比决定了组织学分化程度。在不确定的情况下,可以使用 MYB 抗体进行免疫组织化学染色 - 阳性结果表明 ACC 特有的 MYB 基因易位,可通过荧光原位杂交 (FISH) 确认 [11, 12]。ACC 的特征是黏膜下和神经周围扩散 [13]。在诊断时,仅约 10% 的患者出现区域淋巴结转移或远处转移 [2]。尽管ACC的生长速度通常较慢,但在某些情况下,其病程可能更具侵袭性,具有局部侵袭和转移的趋势。此外,即使经过很长的无病期,也可能出现局部或全身复发[2,5]。
注释和定义 无细胞循环肿瘤 DNA (ctDNA) 是血液中循环的碎片状肿瘤衍生 DNA,它未被细胞携带。ctDNA 直接来自肿瘤或循环肿瘤细胞。循环肿瘤细胞 (CTC) 是从原发性肿瘤或转移部位脱落到血流或淋巴系统的完整细胞,通过血液循环在体内循环。 临床考虑 无细胞循环肿瘤 DNA 分析不应代替组织学组织诊断,但是,在上述特定临床考虑下,可以考虑使用 ctDNA。 无细胞循环肿瘤 DNA 分析不应与实体瘤的组织检测同时进行。如果无细胞循环肿瘤 DNA 分析结果为阴性,建议进行基于组织的分析。 描述 无细胞循环肿瘤 DNA (ctDNA) 直接来自肿瘤组织(原发性或转移性);随着肿瘤细胞死亡,其内容物被释放到血液中。对无细胞循环肿瘤 DNA (ctDNA) 进行的基因测试(也称为液体活检)可能为检测“驱动突变”或获得性基因突变提供一种非侵入性组织活检替代方法,可指导靶向治疗,也可用于追踪疾病进展。循环肿瘤细胞 (CTC) 是从肿瘤细胞脱落到血液或淋巴系统的完整肿瘤细胞。大多数检测通过使用表面上皮标志物(如 EpCAM 和细胞角蛋白)来检测 CTC。检测 CTC 的主要原因是通过量化循环水平进行预后,而不是指导治疗选择。相关政策本政策文件提供了循环肿瘤 DNA (ctDNA) 和循环肿瘤细胞检测(液体活检)的覆盖标准。有关其他肿瘤学相关检测,请参阅:
摘要:无角凯尔特(Pc)突变位点是一种遗传学上简单的单突变,是利用基因编辑技术培育无角牛的最佳选择。但Pc位点调控角芽发育的机制尚不明确,因此利用基因编辑、体细胞核移植和胚胎移植的方法获得无角荷斯坦胎牛(妊娠期90天),以纯合Pc插入的胎牛(基因编辑荷斯坦胎牛,EH)和野生型90天荷斯坦胎牛(WH)作为对照。苏木精-伊红(HE)染色结果显示,与WH相比,EH角芽没有白色角化突起或空泡状角质形成细胞,真皮组织下没有粗大的神经束。DNA测序结果显示,Pc位点以纯合方式插入胎牛基因组中。通过转录组测序分析共鉴定出791个差异表达基因。差异表达基因富集分析与蛋白相互作用分析结果显示,Pc插入后存在丰富的基因改变,与粘附分子调控、肌动蛋白表达、细胞骨架变形以及角蛋白表达与角化有关。同时值得注意的是,结果中还包含多个已报道与角性状发育相关的基因,如RXFP2、TWIST1等,本研究首次鉴定出这些改变并进行了总结。研究结果提示,Pc突变位点可能抑制神经嵴细胞EMT生成和角蛋白表达,导致神经嵴细胞不能迁移和角芽组织不能角化,从而调控无角表型的产生。
胰腺导管腺癌是一种致命的癌症类型,与体细胞中的多种基因突变有关。基因工程小鼠几乎不适用于开发胰腺癌模型,异种移植模型在反映早期胰腺癌方面存在局限性。因此,使用成簇的规律间隔的短回文重复序列进行体内体细胞基因工程用于生成胰腺癌动物模型越来越受到关注。在本研究中,我们选择了 Kras、Trp53、Ink4a、Smad4 和 Brca2 作为靶基因,并应用空肠弯曲菌 Cas9 (CjCas9) 和化脓性链球菌 Cas9 (SpCas9) 通过腺相关病毒 (AAV) 转导来开发胰腺癌。在确认 AAV2 的多灶性和弥漫性转导后,我们生成了 SpCas9 过表达小鼠,该小鼠在两次 AAV 转导后表现出靶基因中高双链 DNA 断裂 (DSB) 和胰腺上皮内瘤变 (PanIN) 病变;然而,三次 AAV 转导的野生型 (WT) 小鼠没有出现 PanIN。此外,将小型 Cjcas9 应用于具有两个 AAV 系统的 WT 小鼠,该小鼠还出现了高广泛性 DSB 和 PanIN 病变。观察到了导管和胰岛细胞中的组织学变化和癌症标志物(如 Ki67、细胞角蛋白、Mucin5a、α 平滑肌肌动蛋白)的表达。此外,研究还揭示了几个发现,例如 1) AAV-CjCas9 的多重 DSB 潜力、2) 导管周围淋巴细胞浸润、3) 多灶性癌症标志物表达,以及 4) 在 AAV 介导的靶向中启动 PanIN 需要 12 个月以上。在这项研究中,我们提出了一种用于体内癌症建模的有用工具,该工具也适用于其他疾病模型。
摘要:目的:探讨冷热消融治疗晚期肺癌(LC)患者的临床疗效及对免疫功能的影响。方法:回顾性分析湖南中医药大学第一附属医院2015年7月至2017年4月间收治的104例晚期LC患者资料,其中接受氩氦刀冷冻消融(AHC)治疗的49例患者为A组,接受射频消融(RFA)治疗的55例患者为B组。比较两组术后近期有效率、局部肿瘤控制率。比较两组治疗前后免疫球蛋白G(IgG)、免疫球蛋白A(IgA)、免疫球蛋白M(IgM)的变化,比较两组治疗后癌胚抗原(CEA)、细胞角蛋白19片段(CYFRA21-1)的变化。治疗期间比较两组并发症及不良反应发生情况,采用Cox回归分析分析影响患者预后的因素。结果:两组治疗后IgA、IgG、IgM比较差异均无统计学意义(P>0.05),两组治疗后CEA、CYFRA21-1比较差异均无统计学意义(P>0.05),两组术后3、6个月疾病控制率、有效率比较差异均无统计学意义(P>0.05)。A组胸腔积液发生率明显低于B组(P<0.05),A组术中疼痛发生率明显高于B组(P<0.05)。年龄、临床分期、CEA、CYFRA21-1是影响患者总生存的独立预后因素(P<0.05)。结论:AHC及RFA治疗晚期LC创伤小、并发症少;冷热消融是相对安全、有效的肿瘤微创治疗技术,值得在LC临床治疗中应用推广。
对于角膜缘干细胞缺乏症 (LSCD) 患者,体外扩增的人角膜缘上皮细胞 (HLEC) 移植可恢复角膜表面的结构和功能完整性。然而,HLEC 的培养和移植方案差异很大,大多数方案中都使用霍乱毒素、外源性生长因子、激素和胎牛血清等生长添加剂。本文首次比较了在含有胎牛血清的复合培养基 (COM) 中培养的人羊膜 (HAM) 上的人角膜缘上皮细胞 (HLEC) 和在仅添加人血清作为生长添加剂的培养基 (HSM) 上的培养情况,并报告了我们对在自体 HSM 中扩增并用于 LSCD 患者移植手术的 HLEC 的首次研究。利用全基因组微阵列、RT-PCR、Western印迹法对扩增的HLEC进行检测,并评估其细胞活力、形态、免疫组化标志物表达和集落形成效率。在HSM中培养HLEC可产生多层上皮,其中在基底层检测到了与LESC相关的标志物细胞。在HSM和COM中培养的细胞之间转录差异很小,细胞活力相当。与LESC相关的p63基因在HSM中的表达量是COM的3.5倍,Western印迹法证实HSM培养物中p63a带更强。角膜特异性角蛋白CK12在两种培养条件下的发现量相同,但HSM中的CK3阳性细胞明显更多。 LSCD 患者移植手术后,HAM 上皮片中残留的细胞表现出中心上皮特征,在生长停滞的成纤维细胞上低密度培养的分离细胞产生的克隆包含 21.12% 的 p63a 阳性细胞(n = 3)。综上所述,不含动物来源或动物细胞培养物来源的生长添加剂,仅以人血清作为单一生长添加剂的培养基,可以作为 HAM 上 HLEC 体外扩增常用复合培养基的等效替代品。2012 Elsevier Ltd. 保留所有权利。
原发性肝癌新发病例数为 90.6 万,在恶性肿瘤增长中位居第六位。此外,肝癌死亡人数为 83 万,在死亡率方面位居第三位(Sung et al.,2021)。肝细胞癌 (HCC) 是原发性肝癌的最重要形式,约占肝癌病例的 90%(Anwanwan et al.,2020)。多种风险因素可导致原发性肝癌的发展,包括乙型肝炎病毒 (HBV) 感染、丙型肝炎病毒 (HCV) 感染、纤维化慢性肝损伤、黄曲霉毒素 B1 和过量饮酒(Akinyemiju et al.,2017;欧洲肝脏研究协会和欧洲癌症研究与治疗组织,2012 年)。 HCC从具有微小基因突变的异常增生病变持续发展到HCC晚期,表现出涉及多种分子的显著分子异质性(Marquardt et al., 2015)。HCC发展多个阶段的广泛肿瘤异质性阻碍了患者的分层和有效治疗(Giannelli et al., 2016)。因此,探索HCC的肿瘤异质性将有助于对患者进行分层和有效治疗。HCC的肿瘤转化通常起源于肝细胞和祖细胞,两者都是上皮细胞类型。这些上皮细胞的可塑性变化通常被称为上皮-间质转化(EMT),增加了细胞异质性的复杂性(Giannelli et al., 2016)。癌细胞中的EMT程序可以在侵袭和转移过程中以不同程度暂时或稳定地激活。粘附分子高表达可增强细胞的迁移能力和侵袭性。大量证据表明,EMT在癌症侵袭和转移中起着重要作用(Nieto et al.,2016;Thiery et al.,2009;Thiery,2002;Hanahan and Weinberg,2011)。通过分析恶性上皮性肝细胞的各种EMT表型,研究人员可以评估HCC的复杂性和细胞异质性。很少有研究在大量的活检样本中研究几种EMT标志物,因此很难仅根据单一标志物来判断EMT的发生(Yang et al.,2009)。E-cadherin与occludin或细胞角蛋白一起代表了最常用的上皮特征标志物,而N-cadherin和vimentin是最常见的EMT标志物。
抽象的背景检查点抑制剂诱导的肝炎(CPI-HEPATIS)是扩大CPI在癌症免疫疗法中使用CPI的新问题。在这里,我们开发了一种小鼠模型来表征CPI-肝炎的机制,并以治疗方法靶向推动这种病理学的关键途径。方法C57BL/6野生型(WT)小鼠用Toll-like受体(TLR)9激动剂(TLR9-L)进行肝启动,结合抗胞毒性T型T型脂肪毒素T型脂肪蛋白抗原-4(CTLA-4)以及抗抗细胞buffered sarine sarine sarine sarine sarine sarine sarine sarine 1(pd-1(pd-1)(pd-1(pd-1)控制长达7天。流式细胞仪,组织学/免疫荧光和信使RNA测序用于表征肝髓样/淋巴样子群和炎症。通过血浆丙氨酸转氨酶(ALT)和细胞角蛋白-18(CK-18)测量评估肝细胞损伤。在RAG2 - / - 和CCR2 RFP/RFP转基因小鼠中进行了CPI-肝炎的体内研究,并遵循抗CD4,抗CD8或Cenicriviroc(CVC; CVC; CCR2/CCR2/CCR5拮抗剂)治疗。结果CPI与TLR9-L诱导的肝脏病理的共同给药非常类似于人类疾病,随着颗粒酶B + perforin + CD8 + CD8 + T细胞和CCR2 +单核细胞的浸润和聚类增加,治疗后7天。这伴随着围绕这些簇,Alt和CK-18血浆水平升高的凋亡肝细胞。肝RNA测序鉴定出关键信号通路(JAK-STAT,NF-κB)和细胞因子/趋化因子网络(IFNγ,CXCL9,CCL2/ CCR2)是CPI-肝炎的驱动因素。使用此模型,我们表明CD8 + T细胞介导了实验性CPI-HEPATIS中的肝细胞损伤。然而,它们的肝募集,聚类和细胞毒性活性取决于CCR2 +单核细胞的存在。在CCR2 RFP/RFP小鼠中不存在肝单核细胞募集,而CCR2通过CVC治疗在WT小鼠中抑制CCR2能够防止发展并逆转实验性的CPI-肝炎。结论这种新建立的小鼠模型为CPI-肝炎的体内机械研究提供了一个平台。使用该模型,我们证明了肝脏抑制性CCR2 +单核细胞与组织损害CD8 + T细胞相互作用在CPI-肝炎发病机理中的核心作用,并突出了CCR2抑制作用作为一种新型的治疗靶标。
光动力疗法(PDT)已成为实体瘤和非综合疾病的非侵入性和选择性治疗方案的突出性。然而,诸如光渗透到组织的浅渗透和光敏机(PS)的较差的局限性阻碍了其效率。为了应对这些挑战,研究人员正在探索基于纳米技术的递送工具和基于细胞的方法,以改善PS分布,靶向积累和受控药物释放。本期特刊展示了肿瘤学和非综合PDT药物输送系统的进步。本社论旨在概述本期《特刊》中发表的八篇研究文章和七篇评论论文。obaid及其同事将他们的研究重点放在改善基于OSMIUM(II)的光敏剂(ML18J03)的性能上,该光敏剂(ML18J03)被配制为DSPE-MPEG2000胶束。这种配方不仅改善了光敏剂的发光,而且还提高了其肿瘤选择性。通过将光敏剂封装在胶束中,搜索者能够增强其在肿瘤组织中的积累并达到更高水平的选择性,从而解决了光敏剂的低发光量子产率所带来的挑战[1]。组合疗法一直在引起人们的注意,以增加癌症治疗的特征结果。在这种情况下,Duchi和合作者探索了角蛋白纳米粒子中氯素-E6(CE6)和紫杉醇(PTX)的共囊化,以治疗骨肉瘤(OS)。这种组合显示出抑制肿瘤细胞生长的有希望的结果。通过将CE6和PTX共同交付,研究人员观察到OS的原位模型中的协同作用,与单独使用任何一种治疗相比,肿瘤大小显着降低了[2]。Muragaki及其同事分析了Talapor Fium介导的PDT的效率,作为复发性胶质母细胞瘤(GMB)的治疗方法。对70例使用PDT手术和38例单独手术的患者进行了回顾性分析。结果表明,与对照组相比,PDT组的中值无进展生存期更长。第二次手术后的中位总生存期在PDT组中也更长。该分析进一步表明,不管发生前病理学,PDT的有效性都是一致的,这表明复发性GBM患者的潜在生存益处[3]。在同一主题上,Tsung Yang及其同事致力于开发用于治疗GMB的新治疗选择。作者研究了使用光化学间杀菌剂将治疗药物释放到GBM细胞中使用光激活的光敏剂。该研究采用了依托泊苷(ETOP)和原磷脂IX(PPIX),并被载入聚胺树状聚合物纳米球中。与游离PPIX相比,该配方显示出增强的细胞摄取,与单独使用ETOP和PPIX治疗相比,光照射会增加协同作用,氧气应激和凋亡[4]。这些纳米载体被设计为靶向过表达表皮生长的细胞为了应对癌症治疗中精确药物定位的挑战,Nonell和同事的研究致力于开发靶向的化学量 - 纳米载体。