真菌对磷酸盐的溶解是陆地生态系统养分循环的重要过程,尤其对于植物生长发育必需的元素磷的可用性而言。磷通常以不溶性形式存在于土壤中,例如铁、铝和钙的无机磷酸盐,这限制了植物根部对其的吸收。然而,磷酸盐溶解真菌能够通过分泌有机酸和磷酸酶将可用的磷酸盐释放到环境中,将这些不溶性形式转化为植物可利用的磷酸根离子。该机制不仅在植物营养方面发挥着关键作用,而且在陆地生态系统的可持续性方面也发挥着关键作用,有助于有效的磷循环和提高农业生产力。本研究的目的是通过巴西亚马逊西部微生物收集中心的三种具有散生菌目形态特征的真菌菌株,对不同磷酸盐源的溶解能力进行分子鉴定和表征。首先,重新激活这些细胞系,并使用 2% CTAB 方法进行 DNA 提取。接下来,进行 CaM(钙调蛋白)区域的扩增,作为物种鉴定的分子标记,然后进行测序和系统发育分析。为了确保分析的稳健性,基于相关物种序列的比对,采用了最大似然法,并进行了 1000 次重复。为了评估无机磷酸盐的溶解潜力,在含有三种不同形式的不溶性磷酸盐的培养基中对分离物进行体外定性测试:磷酸铁(FePO₄)、磷酸铝(AlPO₄)和磷酸钙(Ca₃(PO₄)₂)。将真菌在28°C的恒温下培养四天。磷酸盐的溶解度通过溶解指数来量化,该指数是一个参数,表示真菌在培养基中在其菌落周围产生溶解晕的能力。该指数是根据溶解晕的直径与真菌菌落直径的比率计算得出的。系统发育分析证实,所研究的三种菌株属于 Talaromyces sayulitensis 种。在进行的测试中,Talaromyces sayulitensis 菌株表现出溶解不同来源的无机磷酸盐的高潜力,在所有测试介质中呈现溶解晕。在含有磷酸铝(AlPO₄)的培养基中观察到最高的溶解率。这些结果表明,Talaromyces sayulitensis 具有显著的溶解各种形式磷酸盐的能力,作为一种有前途的生物技术工具,它可以提高贫瘠土壤中磷的利用率,促进植物生长,并有助于可持续农业实践。
大型真核基因组被包装到核的受限区域中,以保护遗传密码并提供一个专门的环境来读取,复制和修复DNA。基因组在染色质环和自我相互作用域中的物理组织提供了基因组结构的基本结构单位。这些结构排列是复杂的,多层的,高度动态的,并且影响了基因组的不同区域如何相互作用。通过增强剂促进剂相互作用在转录过程中的作用已得到很好的确定。不太了解的是核结构如何影响DNA复制和修复过程中染色质交易的大量交易。在这篇综述中,我们讨论了在细胞周期中如何调节基因组结构,以影响复制起源的定位和DNA双链断裂修复的协调。基因组结构在这些细胞过程中的作用突出了其在保存基因组完整性和预防癌症的关键参与。
纳米颗粒在纳米技术领域起着至关重要的作用,由于其表面积归因于其小尺寸,因此提供了不同的特性。中,银纳米颗粒(AGNP)由于其抗菌特性而引起了极大的关注,其应用可以追溯到古老的药用实践到包含离子或银纳米颗粒的当代商业产品。agnps除了与某些抗生素结合使用时表现出协同作用,还具有针对细菌,真菌,病毒和分枝杆菌的广谱杀生物潜力。其抗菌作用的机制包括产生氧气反应性物种,对DNA的损伤,细菌细胞膜破裂和抑制蛋白质合成。最近的研究强调了AGNP通过对抗抗生素耐药性病原体的潜力来对各种临床相关的细菌菌株的有效性。本综述研究了AGNP发挥其抗菌作用的蛋白质组学机制,特别着眼于它们针对浮游细菌和生物膜中的活性。此外,它讨论了AGNP的生物医学应用及其对抗生素制剂的潜在不准备,还解决了对抗生素耐药性的问题。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
方法:2022 年 11 月至 2023 年 1 月期间,在印度尼西亚东爪哇省玛朗市对 15-99 岁人群进行了横断面研究。在 10,050 名潜在受访者中,有 10,007 人能够完成调查。主要自变量是有关 COVID-19 的知识,使用六项问卷进行评估。因变量是 COVID-19 疫苗接种和 COVID-19 加强疫苗接种。中介变量是受访者接种 COVID-19 疫苗的意愿。线性回归用于检验与 COVID-19 知识相关的因素。逻辑回归用于检验 COVID-19 知识与疫苗接种之间的关联。进行了广义结构方程模型 (GSEM) 以检验接种疫苗的意愿是否介导了 COVID-19 知识与疫苗接种之间的关联。
2. 您拥有哪些背景和经验,使您有资格履行这些职责?作为研究和工程领域的行业和政府领导者,我对科学、技术、创新生态系统、平台集成和飞行测试有了广泛的了解,这些对于这一角色至关重要。在我的职业生涯中,我管理过各种技术的研究、技术和工程项目,包括电子防护、先进雷达系统、电子战系统、无人战车以及国防工业的主要情报、监视和侦察系统。我之前在政府部门担任陆军采购后勤和技术助理部长,因此我对该部门管理研究和技术的方法有着深刻的理解,因为我是陆军部长的首席科学顾问,也是陆军 12 个项目执行办公室的采购主管,涉及航空、地面作战系统、战斗支援/战斗勤务支援、弹药、战术指挥与控制、计算机、化学和生物防御、情报和电子战系统、企业信息系统、导弹与空间、士兵系统、模拟、训练与测试以及化学武器的拆除。我在陆军部门任职 10 年,
通过降解蛋白质降解进行过程。蛋白酶体抑制剂已显着提高了多发性骨髓瘤患者的存活率。然而,经临床认可的蛋白酶体抑制剂未能针对这样的盖子肿瘤功效,既不单独或与其他疗法结合。针对Severa l自身免疫性疾病和结肠CA N CER的临床前模型,针对免疫蛋白酶体的靶向免疫蛋白酶体已有效。此外,免疫抑制剂抑制剂可防止慢性排斥Ogeneic器官移植。近年来,抑制一个蛋白质5ome的一个活跃中心不足以实现治疗益处的抑制已变得已经变得明显了。在这篇综述中,我们总结了靶向多种催化活性蛋白酶体的最新见解,如何干扰自身免疫性,实体瘤的生长以及所有OGRAF T排斥的疾病进展。
在肺和所有其他器官之间转运氧气和二氧化碳,红细胞依赖于成人血红蛋白(HBA),一种含有两个α-珠蛋白和两个β-环球蛋白亚基的四聚体蛋白。患有功能障碍或β-珠蛋白量不足的患者患有世界上最常见的生命遗传疾病,共同称为β-血红蛋白疾病。这些疾病的分子病理生理,例如镰状细胞疾病,已经闻名了多年,但治疗选择仍然非常有限。[1]镰状细胞疾病是由编码基因HBB的点突变引起的,该基因HBB导致受影响的镰状血红蛋白(HBS)在低氧条件下聚合。结果,红细胞变成镰状的,倾向于阻塞毛细血管,这会导致整个体内缺血性损害的积累。基因治疗对治疗治疗有很大的希望,[2]但是,大多数居住在低收入和中等收入国家的患者[3]大多数患者无法获得基因治疗所需的医疗基础设施。迫切需要以口服药物的形式进行治疗。出生前,红细胞表达胎儿血红蛋白(HBF),其中包含两个α-珠蛋白和两个γ-珠蛋白亚基。出生后,从γ-珠蛋白转换为β -Globin