参考基因组是比较个人基因组以推断临床变异的基线标准。广泛使用的参考基因组 GRCh38 包含间隙和未解析的碱基,尤其是在复杂区域,这可能会影响变异的发现。相比之下,无间隙端粒到端粒 CHM13 (T2T-CHM13) 参考基因组可用于评估基因组的困难区域。光学基因组图谱 (OGM) 是一种用于结构变异识别的成像技术,与传统细胞遗传学方法相比,其分辨率有所提高。我们的研究展示了 T2T-CHM13 参考基因组在复杂区域中增强结构变异 (SV) 检测的实用性。我们通过两个临床病例说明了这一点,其中与 T2T-CHM13 的改进比对导致关键 SV 的置信度得分显著提高。我们展示了更新后的 T2T-CHM13 参考的临床诊断结果有所改善,并提倡采用它。
话语分析研究文档中的句子orga-nibibal,旨在揭示其潜在的结构信息。关于对话话语解析的现有作品主要使用仅编码模型和复杂的De-编码策略来提取结构。尽管大型语言模型(LLMS)的最新进展,但直接将这些模型应用于解剖学解析还是具有挑战性的。为了充分利用LLM中丰富的语义和话语知识,我们建议使用文本到文本范式将分析转变为一代任务。我们的方法是直觉的,不需要修改LLM体系结构。对STAC和Molweni数据集的实验结果表明,诸如T0之类的序列模型可以很好地表现。值得注意的是,我们改进的基于过渡的序列到序列系统在Molweni上实现了新的最新性能。此外,我们的系统可以生成更丰富的话语结构,例如图形,而以前的方法主要限于树木。1
摘要 - 在计算科学领域中,量子计算是无与伦比的潜力的灯塔,可以瞥见解决古典计算机无法解析的。这些论文各自提供独特的观点:偷窃和苏特的“量子计算:从理论到实验的简短课程”,伯特尔斯的“量子计算:多远?“我的论文旨在对量子计算的世界产生重大影响。通过结合这些论文的要点,我希望强调量子计算中的主要挑战,例如确保数据准确并且系统正常工作。我想提出一些方法来改善技术,改善可以存储数据的时间并解决任何可能发生的错误。这项工作至关重要,因为它为未来的量子计算中的发展铺平了道路。我想帮助解决该领域的大问题,希望通过找到解决这些挑战的解决方案来将量子计算推向更光明的未来。
镁二聚体 (Mg 2 ) 的高能级振动态已被公认为超冷和碰撞现象研究中的重要系统,半个世纪以来,它的高能级一直未能通过实验表征。到目前为止,只有 Mg 2 的前 14 个振动态得到了实验解决,尽管有人提出基态势可能支持另外 5 个能级。在这里,我们基于最先进的耦合团簇和全组态相互作用计算,给出了 Mg 2 实验研究中涉及的基态和激发态电子态的高精度从头算势能曲线 20。我们的基态势明确证实了 19 个振动能级的存在,计算出的振转项值与可用的实验数据以及实验得出的数据之间的均方根偏差约为 1 cm −1。我们的计算重现了最新的激光诱导荧光光谱,并为实验检测以前未解析的振动能级提供了指导。一句话总结
语义解析的最新进展几乎不考虑英语以外的其他语言,但专业翻译的速度可能非常昂贵。我们将接受单一语言训练的语义解析器(例如英语)调整为新的语言和多个域,并具有最小的注释。我们查询机器翻译是否足以替代培训数据,并将其扩展到使用英语,释义和多语言预培训模型的联合培训来调查引导。我们通过在多个编码器上的注意力并提出了ATIS的新版本,并在德语和中文中介绍了新版本,从而开发了一个基于变压器的解析器,将副本酶结合在一起。实验结果表明,MT可以在新的语言中近似训练数据,以便通过多个MT engines进行释义时进行准确解析。考虑到MT何时不足,我们还发现,使用我们的方法仅使用50%的培训数据才能在完全转移的2%内实现解析精度。1
我们提出了一种基于微型,能量,低成本的单光子凸轮的测量值来重建任意兰伯特对象的3D形状的方法。这些摄像机作为时间解析的图像传感器运行,用非常快速的脉冲脉冲融合了光,并记录了该脉冲的形状,因为它以高时间分辨率从场景中返回。我们提出了模拟此图像形成过程的建模,解释其非理想性,并适应神经渲染以从一组具有已知姿势的空间分布的传感器中重建3D几何形状。我们表明,我们的方法可以从模拟数据中成功恢复复杂的3D形状。我们利用商品代理传感器的测量结果来证明实际捕获的3D对象重建。我们的工作在基于图像的建模和活动范围扫描之间建立了连接,并通过单光子摄像机朝着3D视觉提供了一步。我们的项目网页位于https://cpsiff.github.io/ toug_3d_vision/。
摘要 量子理论为描述量子物质的平衡性质提供了一个广泛的框架。然而,量子模拟器中的实验现在已经开辟了一条超越这一平衡范式的量子态生成途径。虽然这些状态有望表现出不受平衡原理约束的性质,例如微正则系综的先验概率相等,但确定非平衡量子动力学的一般性质仍然是一项重大挑战,尤其是考虑到缺乏自由能等传统概念。动态量子相变理论试图通过将相变概念提升到相干量子实时演化来识别这些一般原理。这篇评论为该领域提供了教学介绍。从封闭量子多体系统中非平衡动力学的一般设置开始,我们给出了动态量子相变的定义,即时间上的相变,物理量在关键时刻变为非解析的。我们总结了所取得的理论进展以及首次实验观察,并进一步展望了主要的未决问题以及未来的研究方向。
摘要:我们报告了如何使用对全尼克磁性磁性晶体(MPC)的斜向磁磁光(TMOKE)增强的空间来解决空间解析横向磁光kerr效应(TMOKE)增强的观察。首先,MPC中表面等离子体的激发导致15.3μm(18λ)GH偏移。然后,在存在横向磁场的情况下,在实验中,由GH偏移引起的反射光的侧向空间强度分布的调制[Tmoke(x)]达到4.7%。与MPC中常规TMOKE测量值相比,空间解析的Tmoke(X)值高几倍。在GH偏移下,空间分辨的磁光效应的概念可以进一步扩展到其他磁极纳米版本,以增强磁光效应,传感和光调制应用。关键字:鹅 - ha nchen换移,磁性粒细胞,磁性晶体,表面等离子体,横向磁光kerr效应■简介
我们已经在基于绝缘体(SOI)的Schottky屏障光电二极管阵列(PDA)上制造了四元素的石墨烯/硅,并研究了其光电设备性能。在我们的设备设计中,单层石墨烯被用作SOI基板上N型SI通道的光刻定义的线性阵列上的常见电极。通过波长解析的光电流光谱测量显示,在自动操作模式下,PDA结构中的每个元素均显示出最大的光谱响应性约为0.1 A/W。时间依赖的光电流光谱测量值分别具有1.36和1.27 L S的升高时间和秋季时间,显示出出色的光电流可逆性。阵列中的每个元素的平均特定检测率约为1.3 10 12琼斯,而从代码上则是0.14 pw/hz 1/2的小噪声等效功率。预计此处提供的研究将在高增值石墨烯/基于SI的PDA设备应用方面提供令人兴奋的机会。
11. 海上风电行业委员会。海上风电和氢能:解决整合挑战。https://www.owic.org.uk/our-work;博世,乔纳森等人,2018 年 8 月。时间明确和空间解析的全球海上风能潜力。 12. 能源网络协会,2021 年 10 月,《天然气变绿》。适合所有季节的系统:脱碳的整体方法》。https://www.energynetworks.org/newsroom/renewable-hydrogen-offers-best-route-out-of-future-energy-supply-crunches 13. Schenk, Niels J. 等人,2007 年 10 月。荷兰的风能、电力和氢能 https://www.sciencedirect.com/science/article/abs/pii/S0360544207000345 14. Pudjianto, Danny。伦敦帝国理工学院等。英国净零排放能源系统中长时储能的全系统价值。https://imperialcollegelondon.app.box.com/s/24b4ynyq49irqxhqf8n8ygpcso0sl1ft;华莱士,理查德。等,2021 年 5 月,公用事业规模地下氢存储:英国观点和技术,https://www.sciencedirect .com/science/article/abs/pii/S0360319921017481