化石燃料 PV ,风能 间歇性 ESS 锂离子 BESS(响应速度极快,mS 与 min) 锂离子电池价格 锂离子 BESS 安装 从好到有到必须有(基础设施)
摘要:考虑数据可靠性,用于相位不连续性重构的对偶残差优化连接提供了更可靠的方案并产生了更稳健的解缠结果。然而,它们的实际实现通常涉及耗时的迭代全局操作,不适合应用于大块干涉合成孔径雷达(InSAR)相位数据的相位解缠(PU)。提出了一种基于局部最小可靠性对偶扩展的并行PU方法。在给定质量权重图的情况下,基于残差定义对偶可靠性,并引入最小可靠性残差对来表示可能的不连续边界。我们提供了一种具有局部最小可靠性搜索和对偶合并的对偶动态扩展方法。最终获得的最小平衡树用于在可靠性图的帮助下对PU进行路径集成。可靠性图的计算、残差对搜索和动态扩展被设计为并行进行。我们采用基于艾科纳方程和洪水填充的界面传播方案进行并行实现。采用所提方法处理了两大块机载 InSAR 数据,实验结果和分析验证了该方法对大规模 PU 问题的鲁棒性和有效性。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制
联系我们 所提供的信息截至 2024 年 5 月为最新信息。 所列的服务内容可能会在未经预告的情况下发生变更,因此申请时请确认。 如果您使用多种产品或服务,屏幕上计算的金额可能与实际发票金额不同。
xAI 技术可以应用于全局(即解释整个系统的行为)或局部(即解释其针对特定输入的行为)(Guidotti 等人,2018 年)。xAI 技术目前的例子包括显著性图,它可视化输入数据中最重要的预测区域,以及语义解缠,它从底层模型中提取人们可以理解的高级特征(Henne 等人,2020 年)。然而,除了一些值得注意的例外(例如 Cai 等人,2019b 年、Ehsan 等人,2021 年),很少有研究试图评估 xAI 技术的潜在适应性。
抗体自然产生了免疫系统为与入侵入侵者作斗争的保护蛋白。几个世纪以来,它们已被人为地生产并用来消除各种传染病。鉴于Covid-19-Pandemics在全球范围内构成的持续威胁,抗体已成为防止感染和挽救数百万生命的最有前途的治疗方法之一。当前,在计算机技术中,为开发抗体提供了一种创新的方法,从而显着影响抗体的制剂。这些技术通过使用计算工具和算法开发了针对诸如SARS-COV-2等疾病的特异性和效力的抗体。用于设计和开发抗体的常规方法通常是昂贵且耗时的。但是,在计算机方法中,提供了一种当代,有效和经济的范式来创建下一代抗体,尤其是根据生物信息学的最新发展。通过利用多种抗体数据库和高通量方法,可以在硅中设计独特的抗体构建体,从而促进精确,可靠和安全的抗体开发,以供人类使用。与传统上开发的等效物相比,大量由硅固定的抗体已迅速发展为临床试验,并更快就可以使用。本文通过使他们可以访问有关抗体创建的计算方法的当前信息,从而帮助研究人员更快,更迅速地开发SARS-COV-2抗体。
铃木隆之 东京大学艺术与科学研究生院 tkykszk@g.ecc.u-tokyo.ac.jp,https://tkykszk.net
此抽象 API 允许异步处理传输和接收,并可选择由事件驱动。对于传输需求,SDR 应用程序可以自由生成完整的传输需求,并将其提交给描述符中指示的未来传输(即异步操作)。或者,应用程序可以提交带有空样本缓冲区的传输需求,并等待通知开始写入样本。此事件通知将在需求的实际开始时间之前触发,以补偿传输路径延迟。收到通知后,应用程序必须至少以与请求中配置的采样率一样快的速度生成样本,以避免下溢。类似地,应用程序可以异步提交接收需求并在方便时检查样本缓冲区。与传输一样,应用程序可以等待指示第一个样本已到达的事件。由于接收路径中的延迟,此事件自然会在接收请求的开始时间之后发生。应用程序从样本缓冲区读取样本的速度不能快于指定的采样率。