线粒体 DNA 核苷的规则分布对于线粒体功能和基因组遗传至关重要;然而,其潜在机制仍然未知。我们的数据显示,线粒体经常发生自发和可逆的珠化——一种生物物理不稳定性,其中小管起伏成规则间隔的珠子。我们发现珠化具有特征性的长度尺度,同时介导核苷解聚并以接近最大可实现的精度建立核苷间距离。嵴内陷起着双重作用:层状嵴密度决定了珠化频率和持续时间,并在恢复后保留了由此产生的核苷间距。因此,线粒体基因组的分布从根本上受自发珠化和嵴超微结构之间相互作用的支配。
传统青光眼药物疗法无法针对这种病理缺陷,这些疗法通过减少房水分泌或增加非常规流出(房水流出眼球的一条单独途径)起作用。 [4] Rho 激酶抑制剂和肌动蛋白解聚剂是最近推出的两类药物,它们可以放松和软化流出组织细胞,从而降低房水流出阻力。 [4,5] 虽然这些药物可有效降低与青光眼相关的升高眼压,但它们受到普遍存在的局部副作用的阻碍,包括结膜充血、结膜下出血、角膜卷曲和其他与视力模糊相关的角膜异常,包括形状不规则的角膜内皮细胞和点状改变。 [6,7]
高级回收也称为化学,分子或原料回收。这些术语有时可以互换使用。高级回收与机械回收互补。它可以帮助转移混合,灵活和受污染的废物塑料,这些废物无法在经济上进行机械回收,否则将转移到垃圾填埋场。本报告描述了三个主要的高级回收过程,纯化,解聚和转化技术,以生产中间产品(轻质和重油,气体,气体,炭)。这些产品可以进一步处理成可回收的聚合物,这些聚合物能够制造成具有回收含量的新产品,如图1所示。在表1中提供了这些技术的摘要,其中包括首选聚合物和典型输出或产品的摘要。
摘要:使用基于生物的聚合物是减少对石化物质的依赖的一种有前途的方法。此外,解聚引起了聚合物在寿命末期的崩溃或获得特定刺激反应功能的重大关注。但是,结合这两种功能的聚合物的设计仍然是一个挑战。在此,我们报告了一类新的自免糖聚合物,该聚合物通过硫蛋白衍生的醛通过硫醇烯击聚合化。这些聚合物可以进一步用于聚合物聚合物偶联以访问块共聚物。此外,可以通过单个polmer前体的聚合后功能化来引入各种响应式终端盖。这些基于生物的自暴力聚合物通过交替的1,6-消除和环化反应而对特定刺激进行级联反应。
摘要:合成聚合物,通常称为塑料,目前存在于我们生活的各个方面。尽管它们很有用,但它们会出现其寿命后如何处理它们的问题。目前有机械和化学方法来治疗塑料,但是这些方法除其他缺点外,在能源方面可能很昂贵或产生污染的气体。一种更环保的替代方案是回收利用,尽管这种做法并不普遍。基于所谓的循环经济的实践,许多研究集中在酶对这些聚合物的生物降解上。使用酶是一种无害的方法,它也可以生成具有较高添加值的物质。新颖和增强的塑料酶。当前,许多研究集中于实现具有更大水解活性的菌株的共同目的,该菌株对不同范围的塑料聚合物。尽管在大多数情况下提高了解聚速率,但需要进行更多的研究以制定有效的生物降解策略,以用于塑料回收或升级。本综述着重于对微生物生物技术进行降解和回收塑料的最重要研究成果的汇编和讨论。
摘要 分析动态细胞内生物过程的一个挑战是缺乏足够快速且特异性的方法来扰乱细胞内蛋白质活动。我们之前通过在功能域之间插入蓝光控制的蛋白质二聚化模块,开发了微管加末端追踪蛋白 EB1 的光敏变体。在这里,我们描述了一种先进的方法,可以在单个基因组编辑步骤中用这种光敏变体替换内源性 EB1,从而使这种方法可以在人类诱导多能干细胞 (hiPSC) 和 hiPSC 衍生的神经元中使用。我们证明,在发育中的皮质神经元中,急性和局部光遗传学 EB1 失活会诱导生长锥周围微管解聚,随后导致神经突回缩。此外,前进的生长锥会被蓝光照射区域排斥。这些表型与神经元 EB1 同源物 EB3 无关,揭示了 EB1 介导的微管末端相互作用在神经元形态发生和神经突引导中的直接动态作用。
图 1 展示了可持续聚合物从原料到再生的生命周期示意图。陆地和海洋中塑料污染的持续和积累造成的严重环境问题 5 - 8 引发了对可持续聚合物及其商业化的新研究,尽管人类使用可持续聚合物的历史悠久(补充图 1)。将可持续聚合物推向市场的主要挑战包括确保整个供应链的可持续性和效率;保持成本和聚合物性能具有竞争力和可比性或与传统石油基聚合物相比增加价值;以及设计用于对环境负责的再利用、再加工(机械回收) 9 、解聚(化学回收) 10、11 和/或 EoL 生物降解 12 的材料。可持续聚合物的研究应该是多学科的,不应只关注一个专业领域,而应了解材料的整个生命周期,包括聚合物科学、工业和环境科学的相关方面。
MenQuadfi 是一种通过肌肉注射给药的澄清无色无菌液体疫苗,其中含有脑膜炎奈瑟菌 A、C、W 和 Y 血清群荚膜多糖抗原,这些抗原分别与由破伤风梭菌培养物制备的破伤风类毒素蛋白结合。脑膜炎奈瑟菌 A、C、W 和 Y 菌株在 Mueller Hinton 琼脂培养基上培养,并在 Watson Scherp 琼脂培养基中生长。从脑膜炎奈瑟菌细胞中提取多糖,并通过离心、去垢剂沉淀、酒精沉淀、溶剂萃取和透析过滤进行纯化。为了制备用于结合的多糖,用羰基二咪唑 (CDI) 活化 A 血清群,用己二酸二酰肼 (ADH) 衍生,并通过透析过滤进行纯化。将 C、W 和 Y 血清群解聚,用高碘酸盐活化,并通过透析过滤进行纯化。