在实践中,在训练 AI 模型时,训练数据的标记主要用于对图像进行分类(例如汽车或动物)。另一方面,文本的标记有助于识别情绪或特定关键词。对于旨在识别语音的 AI 系统的训练,标记还可以包括转录录音或识别音频输入文件中的特定噪音(例如背景中的交通或飞机)。
摘要 生命科学领域的最新技术进步极大地提高了我们以前所未有的深度在分子水平上解决科学问题的能力。自推出以来,下一代测序 (NGS) 实现了高通量分析,随着时间的推移,变得越来越普及和负担得起,塑造了研究和临床应用的未来。空间分辨转录组学 (SRT),特别是原位测序 (ISS),提供单细胞转录组数据,同时保留周围组织微环境的组织病理学背景。本论文探讨了挂锁探针与原位测序 (ISS) 或下一代测序 (NGS) 结合的应用,以解决与特定疾病相关的问题。在论文 I 中,我们研究了结核分枝杆菌 (Mtb) 与结核病感染小鼠肺中免疫细胞之间的空间相互作用,绘制了细菌簇和单个细菌附近的免疫相关转录本。我们的研究结果表明,在 Mtb 抗性的 C57BL/6 小鼠中,靠近单个细菌的巨噬细胞活化。相比之下,在易感染结核分枝杆菌的 C3HeB/FeJ 小鼠的肺组织中占主导地位的组织化肉芽肿未富集免疫激活转录本。这种方法提供了对结核病免疫反应的见解,并强调了空间分辨转录组学在研究宿主-病原体相互作用方面的能力。在论文 II 中,我们研究了非小细胞肺癌 (NSCLC) 中的肿瘤微环境,重点研究了 T 细胞克隆性的影响。我们将 TCR 克隆性与基因突变、肿瘤免疫特征和对免疫疗法的反应联系起来。我们的数据显示,高 TCR 克隆性与高肿瘤突变负担、发炎的肿瘤表型以及对检查点抑制剂的反应改善有关,这表明其有可能成为 NSCLC 个性化免疫治疗的生物标志物。在论文 III 中,我们在空间上探索了新辅助治疗期间选定的 NSCLC 组织中的 TCR 模式和免疫细胞分布,这些组织具有匹配的未受影响的淋巴结,以及 HER2+ 乳腺癌病例。我们注意到,与匹配的淋巴结相比,癌症组织中的 TCR 多样性较低。我们的数据进一步揭示了扩增克隆型(主要是 CD8 T 细胞)的区域优势,这些克隆型位于靠近癌症区。总体而言,这些结果证明了 ISS 在提供诊断组织样本中肿瘤免疫微环境中克隆 T 细胞扩增之间相互作用的关键空间细节方面的实用性,特别是在治疗环境中。在论文 IV 中,我们开发了一种基于分子倒置探针 (MIP) 的经济高效的检测血液样本中微生物病原体和抗菌素耐药性标志物的检测方法,即使在资源匮乏的环境中也能提供高特异性和灵敏度。MIP 方法简化了病原体检测,无需进行大量的样品制备或生物信息学分析,使其成为资源匮乏地区监测传染病的便捷工具。总的来说,这项工作展示了挂锁探针和先进技术的应用,以加深我们对疾病的了解并改善诊断和个性化治疗。
摘要 人工智能 (AI) 和机器学习 (ML) 正在彻底改变人类各个领域的活动,医学和传染病也未能幸免于其快速而指数级的增长。此外,可解释的 AI 和 ML 领域已变得尤为重要,并吸引了越来越多的关注。传染病已经开始受益于可解释的 AI/ML 模型。例如,它们已被用于或提议用于更好地理解旨在改善 2019 年冠状病毒病诊断和管理的复杂模型、抗菌素耐药性预测领域和量子疫苗算法中。尽管一些有关可解释性和可解释性二分法的问题仍需认真关注,但深入了解复杂的 AI/ML 模型如何得出预测或建议,对于正确应对本世纪传染病日益严峻的挑战变得越来越重要。
为了优化激光诱导的石墨烯(LIG)JANUS膜,本研究研究了膜孔结构,聚二甲基硅氧烷(PDMS)涂层序列以及银(AG)纳米颗粒对膜蒸馏(MD)性能的影响。这项研究旨在增强石墨烯的光热特性,同时使用固有的电导率进行同时照相和电热MD。在相同的照片和电热功率输入中操作,lig janus membrane用较小的毛孔(即闪亮的一面)处理膜面部的膜膜,可改善53.6%的透气性能,并降低特定能量的特定能量35.4%,而与膜相比,用较大的毛孔(i.e.e.e.e.e.e.e.e.e.e)来治疗膜面孔。PDMS涂层序列的效果也取决于孔结构。对于具有较小孔结构的面部,激光照射前的涂层PDM(PDMS-BLSS)与激光照射后的涂层PDMS相比,与涂层PDMS相比,磁通量的提高高达24.5%,特异性能量降低了19.7%(PDMS-ALS)。至于孔结构较大的面部,激光照射前的涂层PDM(PDMS-BLDS)导致与辐照后涂层PDMS相比,与涂层PDMS相比,通量降低高达20.8%,比能量增加了27.1%(PDMS-ALDS)。带有Ag纳米颗粒的LIG JANUS膜导致光热特性提高,将通量提高43.1 - 65.8%,并使特定能量降低15.2 - 30.5%,同时维持相似的电热热特性。进行同时进行照相和电热量MD表明,只有Ag掺杂的Janus Lig膜产生协同作用,从而使组合加热模式的通量高于在单个加热模式下运行时获得的通量的求和。
从根本上讲,保护融资工具旨在提供可持续的资金流和/或提供投资回报率。产生现金流量和来自自然投资的回报需要某人愿意支付的价值流。这就是为什么林业和农业企业具有相关商品(例如木材和农作物)对投资者来说更为直接的途径:现金流以及提供投资回报率的能力。生态系统服务,无论是碳固换,洪水调节还是改善的空气质量都与实际成本有关。但是,为了提供投资回报率,金融工具需要使三个不同的群体保持一致:愿意为服务付费的人,从交付中受益的人以及将得到补偿的人。
●……严格禁止。这包括使用AI来生成想法,概述方法,回答问题,解决问题或创建原始语言。本课程中的所有工作都必须是您自己的或在允许的小组工作中创建的。●…应在有限的基础上允许。您将被告知可以使用AI的作业。您也欢迎您在任何作业上使用AI写作工具的事先批准。在任何一种情况下,都应谨慎使用AI写作工具,因为应适当地使用AI的使用。未经我允许或授权使用AI写作工具,或者即使在允许的情况下也无法正确引用AI,构成了违反UT Austin关于学术完整性的机构规则的违反。●…适用于AI产生的内容,允许使用它们的学生。如果您考虑使用AI写作工具,但不确定是否允许或适当地使用它们的程度,请询问。”
➢这是一个欺骗深神经网络(DNN)的实验:在第二和第四张图像中,工程师仅保留了系统用于识别吉他和企鹅的系统的元素,并更改了其余的所有内容,以使系统仍然像吉他和企鹅一样“看到”他们。➢Goodfellow等人的作品。(2014)从普遍的扰动开始打开了进一步发展的大门(Moosavi-Dezfooli等人。2017)最近的一个像素攻击,该攻击显示了如何通过在输入图像中更改一个像素来欺骗神经网络。笔记本在这里一张像素攻击原始纸
摘要 在胸部 X 光 (CXR) 诊断领域,现有研究通常仅侧重于确定放射科医生的注视点,通常是通过检测、分割或分类等任务。然而,这些方法通常被设计为黑盒模型,缺乏可解释性。在本文中,我们介绍了可解释人工智能 (I-AI),这是一种新颖的统一可控可解释流程,用于解码放射科医生在 CXR 诊断中的高度关注度。我们的 I-AI 解决了三个关键问题:放射科医生注视的位置、他们在特定区域关注的时间以及他们诊断出的发现。通过捕捉放射科医生凝视的强度,我们提供了一个统一的解决方案,可深入了解放射学解释背后的认知过程。与当前依赖黑盒机器学习模型的方法不同,这些方法在诊断过程中很容易从整个输入图像中提取错误信息,而我们通过有效地屏蔽不相关的信息来解决这个问题。我们提出的 I-AI 利用视觉语言模型,可以精确控制解释过程,同时确保排除不相关的特征。为了训练我们的 I-AI 模型,我们利用眼球注视数据集来提取解剖注视信息并生成地面真实热图。通过大量实验,我们证明了我们方法的有效性。我们展示了旨在模仿放射科医生注意力的注意力热图,它编码了充分和相关的信息,仅使用 CXR 的一部分即可实现准确的分类任务。代码、检查点和数据位于 https://github.com/UARK-AICV/IAI。1. 简介
首先,我们研究了生成超级马里奥关卡的不同可能性。TOAD-GAN [ 3 ] 仅使用一个示例即可进行训练。该方法还使用户能够通过更改代表生成器网络输入的噪声向量来控制生成过程的输出。由于设计师无法解释噪声向量,因此设计师仍然无法根据自己的需求设计内容。为了实现这一点,必须让设计师能够解释噪声向量,并将噪声向量的不同区域映射到噪声向量变化所产生的内容。生成超级马里奥关卡的另一种方法是使用带有图块集的进化算法 [ 4 ]。图块集强制输出的一致性,而 Kullback-Leiber 散度