摘要 自我调节学习 (SRL) 是一种认知能力,在促进学生有效制定策略、监控和评估自己的学习行为方面具有明显意义。研究表明,缺乏自我调节学习技能会对学生的学业成绩产生负面影响。有效的数据驱动反馈和行动建议被认为对 SRL 至关重要,并显著影响学生的学习和表现。然而,向每个学生提供个性化反馈的任务对教师来说是一个重大挑战。此外,由于大多数课程的学生人数众多,为个性化建议确定适当的学习活动和资源的任务对教师来说也是一个重大挑战。为了应对这些挑战,一些研究已经探讨了基于学习分析的仪表板如何支持学生的自我调节。这些仪表板提供了一些关于学生成功和失败的可视化(作为反馈)。然而,虽然这种反馈可能有益,但它并没有提供有见地的信息或可行的建议来帮助学生提高学业水平。可解释的人工智能 (xAI) 方法已被提出来解释此类反馈并从预测模型中产生见解,重点关注学生在正在进行的课程中需要采取的相关行动以改进。此类智能活动可以作为数据驱动的行为改变建议提供给学生。本论文提供了一种基于 xAI 的方法,可以预测课程表现并计算信息反馈和可操作的建议,以促进学生的自我调节。与以前的研究不同,本论文将预测方法与 xAI 方法相结合,以分析和操纵学生的学习轨迹。目的是通过为该方法提供的预测提供深入的见解和解释,为学生提供详细的、数据驱动的可操作反馈。与单独的预测相比,该技术为学生提供了更实用和有用的知识。所提出的方法以仪表板的形式实施,以支持大学课程中学生的自我调节,并对其进行了评估以确定其对学生学业成绩的影响。结果表明,仪表板显着提高了学生的学习成绩并提高了他们的自我调节学习技能。此外,研究发现,所提出的方法提出的建议对学生的表现产生了积极影响,并帮助他们进行自我调节。
从根本上讲,保护融资工具旨在提供可持续的资金流和/或提供投资回报率。产生现金流量和来自自然投资的回报需要某人愿意支付的价值流。这就是为什么林业和农业企业具有相关商品(例如木材和农作物)对投资者来说更为直接的途径:现金流以及提供投资回报率的能力。生态系统服务,无论是碳固换,洪水调节还是改善的空气质量都与实际成本有关。但是,为了提供投资回报率,金融工具需要使三个不同的群体保持一致:愿意为服务付费的人,从交付中受益的人以及将得到补偿的人。
为了优化激光诱导的石墨烯(LIG)JANUS膜,本研究研究了膜孔结构,聚二甲基硅氧烷(PDMS)涂层序列以及银(AG)纳米颗粒对膜蒸馏(MD)性能的影响。这项研究旨在增强石墨烯的光热特性,同时使用固有的电导率进行同时照相和电热MD。在相同的照片和电热功率输入中操作,lig janus membrane用较小的毛孔(即闪亮的一面)处理膜面部的膜膜,可改善53.6%的透气性能,并降低特定能量的特定能量35.4%,而与膜相比,用较大的毛孔(i.e.e.e.e.e.e.e.e.e.e)来治疗膜面孔。PDMS涂层序列的效果也取决于孔结构。对于具有较小孔结构的面部,激光照射前的涂层PDM(PDMS-BLSS)与激光照射后的涂层PDMS相比,与涂层PDMS相比,磁通量的提高高达24.5%,特异性能量降低了19.7%(PDMS-ALS)。至于孔结构较大的面部,激光照射前的涂层PDM(PDMS-BLDS)导致与辐照后涂层PDMS相比,与涂层PDMS相比,通量降低高达20.8%,比能量增加了27.1%(PDMS-ALDS)。带有Ag纳米颗粒的LIG JANUS膜导致光热特性提高,将通量提高43.1 - 65.8%,并使特定能量降低15.2 - 30.5%,同时维持相似的电热热特性。进行同时进行照相和电热量MD表明,只有Ag掺杂的Janus Lig膜产生协同作用,从而使组合加热模式的通量高于在单个加热模式下运行时获得的通量的求和。
摘要人工智能(AI)和机器学习(ML)正在彻底改变各个领域的人类活动,而医学和传染病并不能免除其快速和指数的增长。此外,可解释的AI和ML的领域已经获得了特别的相关性,并引起了人们的兴趣越来越大。传染病已经开始从可解释的AI/ML模型中受益。例如,在抗菌病毒预测和量子疫苗算法中,它们已被采用或提议更好地理解旨在改善2019年冠状病毒疾病诊断和管理的复杂模型。尽管有关解释性和可解释性之间二分法的某些问题仍然需要仔细关注,但对复杂的AI/ML模型如何得出其预测或建议的深入了解对于正确地面对本世纪传染病的日益严重的挑战变得越来越重要。
缺乏深度学习模型的解释性限制了在临床实践中采用此类模型。基于原型的模型可以提供固有的可解释预测,但是这些预测主要是为分类任务而设计的,尽管医学想象中有许多重要的任务是连续的回归问题。因此,在这项工作中,我们介绍了专家:专门为回归任务设计的可解释原型模型。使用原型标签的加权平均值,我们提出的模型从分离到潜在空间中的一组学习原型的样本预测。潜在空间中的距离正规化为相对于标签差异,并且可以将每个原型视为训练集中的样本。图像级距离是从斑块级距离构建的,其中两个图像的贴片使用最佳传输在结构上匹配。因此,这提供了一个基于示例的解释,并在推理时间提供了补丁级的细节。我们演示了我们提出的两个成像数据集上的脑年龄预测模型:成人MR和胎儿超声。我们的方法实现了最先进的预测性能,同时洞悉模型的推理过程。
经济增长是经济经济政策中不同生产力因素之间相互作用的函数,尤其是它可以用劳动力,生产资源(土地,资本)和技术等方面表达。 div>这项工作旨在采用一个模型来解释发展中经济体的经济增长,该模型是根据上述因素提出了这种增长的模型。然后根据资本和工作提出生产,并调整了两个模型,一种具有外在技术变化,另一种暗示了内源性的技术变化。 div>该模型是通过具有恒定替代弹性的生产函数开发的,因此它适用于发达和发展经济体,因为预计在经济体中会发展出替代经济增长的弹性。 div>研究使我们能够开发
➢这是一个欺骗深神经网络(DNN)的实验:在第二和第四张图像中,工程师仅保留了系统用于识别吉他和企鹅的系统的元素,并更改了其余的所有内容,以使系统仍然像吉他和企鹅一样“看到”他们。➢Goodfellow等人的作品。(2014)从普遍的扰动开始打开了进一步发展的大门(Moosavi-Dezfooli等人。2017)最近的一个像素攻击,该攻击显示了如何通过在输入图像中更改一个像素来欺骗神经网络。笔记本在这里一张像素攻击原始纸
cw:CommonLit文章,解释器:CRISPR的工作原理,与文本有关的问题#1-7应得的:星期日,4/19说明:在Archie和CommonLit上向#'s 1-7发布答案。必须将答案作为Archie上的PDF提交。Archie指令:执行以下任一项:
(4)配电许可证持有者应在相应季度结束后的三十天内向委员会提交季度报告,报告内容应包括配电许可证持有者在相关季度向州政府提出的补贴要求的详细信息,该要求基于州政府宣布的补贴类别和消费者类别的每单位补贴的能源消耗情况、根据该法第 65 条实际支付的补贴、应付和已付补贴的缺口以及委员会和/或电力部根据《2003 年电力法》的规定制定的规则可能指定的其他相关细节。如果不遵守规定,委员会可以指示许可证持有者对许可证持有者的有关官员采取适当的行动。
