摘要 在胸部 X 光 (CXR) 诊断领域,现有研究通常仅侧重于确定放射科医生的注视点,通常是通过检测、分割或分类等任务。然而,这些方法通常被设计为黑盒模型,缺乏可解释性。在本文中,我们介绍了可解释人工智能 (I-AI),这是一种新颖的统一可控可解释流程,用于解码放射科医生在 CXR 诊断中的高度关注度。我们的 I-AI 解决了三个关键问题:放射科医生注视的位置、他们在特定区域关注的时间以及他们诊断出的发现。通过捕捉放射科医生凝视的强度,我们提供了一个统一的解决方案,可深入了解放射学解释背后的认知过程。与当前依赖黑盒机器学习模型的方法不同,这些方法在诊断过程中很容易从整个输入图像中提取错误信息,而我们通过有效地屏蔽不相关的信息来解决这个问题。我们提出的 I-AI 利用视觉语言模型,可以精确控制解释过程,同时确保排除不相关的特征。为了训练我们的 I-AI 模型,我们利用眼球注视数据集来提取解剖注视信息并生成地面真实热图。通过大量实验,我们证明了我们方法的有效性。我们展示了旨在模仿放射科医生注意力的注意力热图,它编码了充分和相关的信息,仅使用 CXR 的一部分即可实现准确的分类任务。代码、检查点和数据位于 https://github.com/UARK-AICV/IAI。1. 简介
© 编辑(如适用)和作者 2022。本书是开放获取出版物。开放获取 本书根据知识共享署名 4.0 国际许可证(http://creativecommons.org/licenses/by/4.0/)的条款获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信用,提供知识共享许可证的链接并指明是否进行了更改。本书中的图像或其他第三方材料包含在本书的知识共享许可证中,除非在材料的致谢中另有说明。如果材料未包含在本书的知识共享许可证中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。本出版物中使用一般描述性名称、注册名称、商标、服务标记等。即使没有具体声明,也不意味着这些名称不受相关保护法律和法规的约束,因此可以自由使用。出版商、作者和编辑可以放心地认为,本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对此处包含的材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图和机构隶属关系中的司法管辖权主张保持中立。
可解释人工智能 (XAI) 领域已迅速成为一个蓬勃发展且成果丰硕的社区。然而,该领域一个不为人知、反复出现且公认的问题是缺乏对其术语的共识。特别是,每一项新贡献似乎都依赖于其自己的(通常是直观的)术语版本,例如“解释”和“阐释”。这种混乱阻碍了该领域进步的巩固,无法满足科学和监管要求,例如在比较方法或确定其对偏见和公平约束的遵从性时。我们提出了一个理论框架,它不仅为这些术语提供了具体的定义,而且还概述了产生解释和阐释所需的所有步骤。该框架还允许重新语境化现有贡献,以便可以衡量其范围,从而使它们与其他方法具有可比性。我们表明,该框架符合对解释、可解释性和评估指标的要求。我们提供了一个用例,展示了如何使用该框架来比较 LIME、SHAP 和 MDNet,确定它们的优点和缺点。最后,我们从我们的框架的角度讨论了 XAI 的相关趋势以及对未来工作的建议。
皮肤癌检测是临床决策支持的一个常见应用 [7]。由于皮肤癌患者数量的增加和早期检测的良好治疗效果,过去几年来,人们在该领域进行了大量研究。在此背景下,DNN 已成为开发皮肤图像分类模型的可行方法 [2、8、12、30]。社区的高度关注导致出现了各种不同方法,其性能水平也参差不齐。1 所有方法的共同点都是训练一个可用于诊断并从而用于临床决策支持的模型。因此,新方法的评估标准通常是它们是否能够使模型在各种皮肤病诊断任务中取得更好的性能结果 [21]。同时,其他 AI 研究领域也越来越多地考虑对模型预测的解释。相比之下,这些技术在皮肤图像分类中的应用几乎没有得到解决,尽管最近的一些研究已经认识到
● D. Gunning,可解释的人工智能(xAI),技术代表,国防高级研究计划局(DARPA)(2017)● AB Arrieta,等人。可解释的人工智能(XAI):概念、分类法、机遇和挑战,走向负责任的人工智能。信息融合 58(2020):82-115。● E. Tjoa、C. Guan,可解释的人工智能(XAI)调查:面向医学 XAI (2019)。arXiv:1907.07374。● LH Gilpin、D. Bau、BZ Yuan、A. Bajwa、M. Specter、L. Kagal,解释解释:机器学习可解释性概述 (2018)。 arXiv:1806.00069 ● FK Došilović、M. Brćić、N. Hlupić,可解释的人工智能:一项调查,载于:第 41 届信息和通信技术、电子和微电子国际会议 (MIPRO),2018 年,第 210-215 页。● A. Adadi、M. Berrada,窥视黑匣子内部:可解释的人工智能 (XAI) 调查,IEEE Access 6 (2018) 52138-52160。● O. Biran、C. Cotton,机器学习中的解释和论证:一项调查,载于:IJCAI-17 可解释人工智能 (XAI) 研讨会,第 8 卷,2017 年,第 1 页。● ST Shane、T. Mueller、RR Hoffman、W. Clancey、G. Klein,《人机交互系统中的解释:可解释人工智能的关键思想和出版物及参考书目的文献元评论概要》,国防高级研究计划局 (DARPA) XAI 计划技术代表 (2019)。● R. Guidotti、A. Monreale、S. Ruggieri、F. Turini、F. Giannotti、D. Pedreschi,《解释黑盒模型的方法调查》,ACM 计算调查 51 (5) (2018) 93:1–93:42。
从根本上讲,保护融资工具旨在提供可持续的资金流和/或提供投资回报率。产生现金流量和来自自然投资的回报需要某人愿意支付的价值流。这就是为什么林业和农业企业具有相关商品(例如木材和农作物)对投资者来说更为直接的途径:现金流以及提供投资回报率的能力。生态系统服务,无论是碳固换,洪水调节还是改善的空气质量都与实际成本有关。但是,为了提供投资回报率,金融工具需要使三个不同的群体保持一致:愿意为服务付费的人,从交付中受益的人以及将得到补偿的人。
在实践中,在训练 AI 模型时,训练数据的标记主要用于对图像进行分类(例如汽车或动物)。另一方面,文本的标记有助于识别情绪或特定关键词。对于旨在识别语音的 AI 系统的训练,标记还可以包括转录录音或识别音频输入文件中的特定噪音(例如背景中的交通或飞机)。