。CC-BY-NC 4.0国际许可证的永久性。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2023年12月16日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.12.16.571081 doi:Biorxiv Preprint
过去30年来,远程敏感机器人的出现出现了,将人们与他们无法到达的地方联系起来并与距离的人进行社交互动[60,77,78]。这些技术通常配备了移动基础,并且可以由远程用户控制以在放置机器人的环境中导航。先前的研究已经确定了在家中使用远程敏感机器人[12、13、90]和护理设施[7、16、46、71]。老年人触发机器人的用例中的用例包括远程医疗任命[8,16,46];与家人和看护者进行沟通[18、28、47、63、64];任务管理[24];远程教育[37];和健康监测[24,25]。远程敏感机器人对于居家的老年人来说可能非常有帮助,即使他们在住宅环境中受到限制,也可以进入他们想进入外部世界的地方。与普通老年人相比,家庭居住的老年人的死亡风险明显更高[23],并且受功能障碍和精神疾病的痛苦更大[20,74,81,87]。在过去的十年中,年龄70岁或以上的家中成年人的患病率增加了一倍以上,从5.0%增加到13.0%,并且这一数字继续增加[6]。
在当今的数字世界中,图像和文档通过电子邮件,社交网络和整个互联网广泛传输。保护文档和图像的敏感性和机密性已成为传输时的主要问题。交流的参与者可能不知道图像是否由第三方访问。网络攻击者利用网络和安全功能的弱点,并尝试访问数据。在医疗行业中,受保护的健康信息(PHI)需要安全性。PHI包括患者的个人资料,健康信息,信用卡详细信息,医疗图像和其他图像。《健康信息隐私与问责制法》(HIPAA)标准为医疗保健从业人员提供了指南,以采取措施确保健康信息免受安全风险。调查说,医疗组织连续第十一年经历了数据泄露的平均成本最高。
简介三阴性乳腺癌 (TNBC) 是一组异质性乳腺癌,其定义是缺乏雌激素受体 (ER)、孕激素受体 (PR) 或人表皮生长因子受体 2 (HER2),至少分为 4 种基因组亚型 (1)。TNBC 患者在接受含蒽环类/紫杉烷的新辅助方案治疗时,病理完全缓解 (pCR) 率为 30% 至 53% (2),最近,一部分患者在接受免疫检查点阻断 (ICB) 治疗后,pCR 率有所提高 (3)。最近,在使用抗体-药物偶联物 (4) 或 ICB 联合化疗治疗 PD-L1 + TNBC (5, 6) 转移性 TNBC 方面也取得了进展。然而,迫切需要确定治疗弱点以及可以增强化疗和免疫疗法反应的治疗方法。
约瑟夫·戈兹吉特(Joseph M. Swiger,1 Danielle J. Blackwell,1 Christina R. Major,1星期四,1 Mario Niepel,1 Zachreneia A. Varsamis,1 Sunaina P. Nayak,1 Hellen Bamberg,1 Jan-Rung Mo,1 Jan-Rung Mo,1 W. David Church,1 Ahmed S. S. Ahmed S. Mady,1 Jeff Song,1 Luke Utley,1 Patricia E. Rao,Timothy 2。 02140,美国2 Patrics E. Consulting,Acton,MA 01720,美国联系人 *灌注:),hkeilhack@rizontx.com(H.K.)https://doi.org/10.1016/j.ccell.2021.06.018https://doi.org/10.1016/j.ccell.2021.06.018
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在伴侣的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons.org/licenses/4.0/。
Karen Rodriguez 1,6†,Francesco Ricci 3,4†,Gaofeng Ni 3,Naima Iram 2,Robin Palfreyman 1,5,7,Ricardo A. Gonzalez-Garcia 1,6,7 1,6,7 1,5,6,7,8 1澳大利亚生物工程和纳米技术研究所,昆士兰州大学,布里斯班大学,澳大利亚昆士兰州2澳大利亚河流研究所,沿海沿海和格里菲斯大学,澳大利亚布里斯班大学,澳大利亚昆士兰布里斯班大学,澳大利亚澳大利亚澳大利亚昆士兰州布里斯班3号,澳大利亚3号澳大利亚澳大利亚澳大利亚生物学研究所,梅尔布,梅尔布,梅尔布尔,梅尔布尔,南极的环境未来,莫纳什大学,墨尔本,维克,澳大利亚,澳大利亚5昆士兰州代谢组学与蛋白质组学(Q-MAP)(Q-MAP),昆士兰州大学,布里斯班,昆士兰州,昆士兰州,澳大利亚6弧形生物学卓越中心(COESB),昆士兰昆士兰大学,昆士兰昆士兰州昆士兰大学,昆士兰昆士兰大学,昆士兰昆士兰大学昆士兰大学,
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在伴侣的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons.org/licenses/4.0/。
摘要:真菌病原体是显着的破坏植物的微生物,对世界作物的产量构成了威胁。几丁质是真菌细胞壁的关键成分和可以通过特定植物受体识别的保守的MAMP(与微生物相关的分子模式),从而激活了几丁质触发的免疫力。在大米和拟南芥等植物中众所周知,特定受体对几丁质感知的分子机制在许多其他植物中也相似。成为植物病原体,真菌必须抑制几丁质触发的免疫的激活。因此,真菌病原体已经发展了各种策略,例如预防几丁质消化或干扰植物几丁质受体或几丁质信号,这些信号在大多数情况下涉及真菌蛋白的分泌。由于几丁质免疫是一种非常有效的防御反应,因此这些真菌机制被认为可以密切协调。在这篇综述中,我们首先概述了当前对金蛋白触发的免疫信号传导和用于抑制其抑制的真菌蛋白的理解。第二,我们讨论了在真菌生物营养中运行的机制,例如白粉病真菌,尤其是在模型物种podosposphaera xanthii中,这是瓜糖粉中粉状霉菌的主要因果剂。在真菌发病机理和促进粉状霉菌疾病的背景下,讨论了与免疫原性差异寡聚物的修饰,降解或隔离有关的关键作用。最后,还讨论了这种基本知识用于开发针对白粉病真菌的干预策略。
1 南洋理工大学生物科学学院,新加坡 637551,新加坡 2 南阿拉巴马大学生物系,阿拉巴马州莫比尔 36688,美国 3 墨尔本大学生物科学学院,维多利亚州帕克维尔 3010,澳大利亚 4 波鸿鲁尔大学生物与生物技术学院,德国波鸿 44810 5 南洋理工大学新加坡环境生命科学工程中心,新加坡 637551,新加坡 6 南方科技大学医学院,深圳市南山区 518055,中国 7 哥本哈根大学植物与环境科学系(PLEN),丹麦 1871 Frederiksberg C 8 哥本哈根大学哥本哈根植物科学中心,丹麦 1871 Frederiksberg C 9 上海交通大学-南京大学杂交水稻国家重点实验室代谢与发育科学联合国际研究实验室上海交通大学生命科学与技术学院阿德莱德农业与健康联合中心, 上海 200240