计划课时 10 计划时间表 先决条件 实验粒子物理背景 描述 实验物理触发和数据采集系统简介。基本元素和定义:触发延迟和触发速率。触发和数据采集之间的联系:死区时间和繁忙状态。多级触发系统,对撞机高能物理触发器。触发器 - DAQ 和相关系统的集成 事件构建、运行控制、在线数据质量。对撞机 HEP 最相关的触发系统的描述:LHC 实验的触发系统。用于固定目标实验和测试光束设置的触发系统。用于粒子和天体粒子物理的无触发 DAQ 系统。触发系统效率对物理测量的影响。
摘要 - 为了确保在设计阶段的早期系统的可靠性,使模型能够预测暴露于静电排放(ESD)的系统的行为变得至关重要。这是越来越多的必要性,因为嵌入式电子产品的数量正在增长,并且由于它们被用于人们安全的应用,例如汽车和航空应用。到目前为止,准静态保护设备的准静态模型成功地在失败预测(主要是硬故障)中提供了相当好的结果。今天,此类设备的频率范围的增加需要动态模型能够重现其瞬态行为。在本文中,我们调查了通常在频域中使用的线性设备建模的常规方法,可用于获得ESD保护设备的等效频率模型,ESD保护设备表现出非线性行为。提出并详细介绍了从传输线脉冲(TLP)测量中提取ESD保护香料模型的方法,以解决瞬态和频率模拟。我们证明,在明确的条件下,此类频率模型可以提供准确的结果,以预测与保护设备触发延迟相关的过冲。对模型的验证是在三个现成设备上的TLP和人类金属模型(HMM)条件下进行的。