MSB 和 LSB 由范围时钟脉冲计时进入输入缓冲器。输入缓冲器是移位寄存器,每个寄存器能够存储 128 位或一个字。每个缓冲器上的范围时钟计数器计数 128 个范围时钟,然后阻止任何进一步的时钟,直到发生另一个触发脉冲。当 MSB 和 LSB 由范围时钟计时进入一个缓冲器时,先前存储在另一个缓冲器中的信息由 1.9 MHz 内存时钟脉冲计时输出。在下一个触发脉冲上,新信息被计时进入由 1.9 MHz 时钟清空的缓冲器,同时先前填充的缓冲器被计时输出。缓冲器之间的切换操作在每个触发脉冲时重复。
当阳极和阴极之间的电压为正时,电流会流过阀门。要使阀门换向电流,必须有正电位(电压),并且晶闸管必须具有触发脉冲。在相反方向上,即当阳极和阴极之间的电位为负时,触发脉冲不起作用。当阳极和阴极之间的电压变为负时,阀门中的电流结束。可以通过推迟触发来延迟电流开始流过阀门或从一个阀门换向另一个阀门的时刻。这种方法允许改变整流器输出电压的平均值。触发脉冲是通过使用电子控制装置同步网络而产生的。这些脉冲可以从它们的“自然触发”点(即两相电压相交的点)移位。触发脉冲移位的方法称为相位控制。
SPOT-F(SPOT-on-the-FLY)——加速阵列生产的点样技术简介:目前,sciFLEXARRAYER 的点样分为两个不同的步骤:移动到某个位置、停止并分配、移动到新位置、停止并再次分配。这适用于广泛的应用,但随着阵列生产中新的吞吐量要求(例如提高生产速度),开发了一种新的点样技术。该技术名为 SPOT-F(Spot-on-the-fly),可在 SCIENION 的生产系统 sciFLEXARRAYER S100 和 sciFLEXARRAYER SX 上启用。设置/打印:SX 和 S100 系统中的驱动机制允许将脉冲单元与电机编码器直接连接。这样可以实现触发脉冲和液滴喷射,而无需停止。点样恰好发生在喷嘴移动到目标上方的那一刻 - 因此得名 SPOT-F(Spot-on-the-fly)。
大规模脉冲神经网络模型模拟是增进我们对大脑动态和最终功能理解的重要工具。然而,即使是像老鼠这样的小型哺乳动物也具有大约 1 × 10 12 个突触连接,在模拟中,每个突触连接通常至少由一个浮点值表示。这相当于几 TB 的数据——对于一台台式机来说,这是不切实际的内存要求。因此,大型模型通常在分布式超级计算机上进行模拟,这很昂贵,并且将大规模建模限制在少数特权研究小组中。在这项工作中,我们描述了 GeNN(我们的图形处理单元 (GPU) 加速脉冲神经网络模拟器)的扩展,使其能够在触发脉冲时“即时”生成连接和突触权重,而不是存储和从内存中检索它们。我们发现 GPU 非常适合这种方法,因为它们具有原始计算能力,但由于内存带宽限制,在模拟脉冲神经网络时,这种能力通常未得到充分利用。我们用最新的 Macaque 视觉皮层模型证明了我们方法的价值,该模型由 4.13×106 个神经元和 24.2×109 个突触组成。使用我们的新方法,它可以在单个 GPU 上进行模拟 - 这是使更多研究人员能够进行大规模大脑建模的重要一步。我们的结果与超级计算机上的结果相符,并且模拟在单个高端 GPU 上的运行速度比以前在 1000 多个超级计算机节点上的运行速度快 35%。
我们描述了一个整合并激发 (IF) 脉冲神经网络,该网络结合了脉冲时间依赖可塑性 (STDP),并模拟了产生皮质可塑性的四种不同条件反射协议的实验结果。最初的条件反射实验是在自由移动的非人类灵长类动物 (NHP) 身上进行的,它们具有自主的头部固定双向脑机接口 (BCI)。三种协议涉及由 (1) 单个皮质神经元的脉冲活动、(2) 前臂肌肉的肌电图 (EMG) 活动和 (3) 自发皮质 β 活动周期触发的闭环刺激。第四种协议涉及在相邻皮质部位开环传递刺激对。复制实验结果的 IF 网络由 360 个单元组成,这些单元具有由突触输入产生的模拟膜电位,并在达到阈值时触发脉冲。240 个皮质单元在其目标单元中产生兴奋性或抑制性突触后电位 (PSP)。除了实验观察到的条件作用外,该模型还允许计算最初未记录的底层网络行为。此外,该模型还预测了尚未研究的协议的结果,包括尖峰触发抑制、g 触发刺激和双突触条件作用。模拟的成功表明,结合 STDP 的简单电压 IF 模型可以捕捉通过闭环刺激介导目标可塑性的基本机制。
摘要。大规模脉冲神经网络模型模拟是提高我们对大脑动态和最终功能理解的重要工具。然而,即使是像老鼠这样的小型哺乳动物也具有大约 1 × 10 12 个突触连接,在模拟中,每个突触连接通常至少有一个浮点值。这相当于几 TB 的数据——对于一台台式机来说,这是不切实际的内存要求。因此,大型模型通常在分布式超级计算机上进行模拟,这很昂贵,并且将大规模建模限制在少数特权研究小组中。在这项工作中,我们描述了 GeNN 的扩展——我们的图形处理单元 (GPU) 加速脉冲神经网络模拟器——使其能够在触发脉冲时“即时”生成连接和突触权重,而不是存储和检索它们。我们发现 GPU 非常适合这种方法,因为它们具有原始计算能力,但由于内存带宽限制,在模拟脉冲神经网络时,这种能力通常未得到充分利用。我们用最新的 Macaque 视觉皮层模型证明了我们方法的价值,该模型由 4.13×106 个神经元和 24.2×109 个突触组成。使用我们的新方法,它可以在单个 GPU 上进行模拟 - 这是使更多研究人员能够进行大规模大脑建模的重要一步。我们的结果与在超级计算机上获得的结果相符,并且模拟在单个高端 GPU 上的运行速度比以前在 1000 多个超级计算机节点上的运行速度快 35%。
囊泡释放的统计数据决定了突触如何传递信息,但经典的独立释放泊松模型并不总是适用于视觉和听觉的最初阶段。在那里,带状突触还将感觉信号编码为由两个或多个同时释放的囊泡组成的事件。这种协调的多囊泡释放 (MVR) 对脉冲产生的影响尚不清楚。在这里,我们使用纯速率代码研究了与泊松突触相比,MVR 如何影响感觉信息的传输。我们使用了泄漏积分和激发模型,结合了实验测量的斑马鱼(两种性别)视网膜双极细胞谷氨酸能突触的释放统计数据,并将它们与假设泊松输入受限于以相同平均速率运行的模型进行了比较。我们发现 MVR 可以增加每个囊泡产生的脉冲数量,同时减少脉冲间隔和第一次脉冲的延迟。综合效应是在模拟不同大小的目标神经元的一系列条件下提高信息传输效率(每个囊泡的位数)。当触发脉冲所需的收敛较少时,MVR 在具有短时间常数和可靠突触输入的神经元中最为有利。在单个输入驱动神经元的特殊情况下,如哺乳动物的听觉系统中,当脉冲产生需要多个囊泡时,MVR 会增加信息传输。这项研究表明,与泊松统计描述的速率代码相比,MVR 对囊泡的突触前整合如何提高感官信息的传输效率。
IFAM GmbH 是一家专门将微电子技术应用于安全技术的工程办公室,位于德国埃尔福特 Parsevalstraße 2, D-99092。联系信息包括电话 +49 – 361 – 65911 -0 和电子邮件 ifam@ifam-erfurt.de,网站为 www.ifam-erfurt.de。该公司提供 IMT4CPU 模块,其中包括 TTL 输入、串行接口 (RS422、RS485)、USB 接口和 LED 输出等功能。技术规格包括最大工作电压为 30V DC,最大电流消耗为 60/30 mA(12/24 V DC),具有 2 个串行 IF 模块、1 个 RS485 模块、1 个 USB 模块、1 个 LED-IF 模块和最多 128 个 I/O 接口。IMT4CPU 还可用于控制最多 2000 个 LED,可通过 IMT4PROC 接口连接进行编程。它具有 4 个 TTL 输入和最多 48 个继电器输出,用于控制外部设备。Minimax FMZ4100 火灾探测控制面板中的微处理器控制分析单元可有效监控大面积区域并从每个探测器传输数字信息,从而实现单个警报识别并将小区域分组为一个探测器组。火灾探测控制面板 FMZ 4100 具有内置自动中断控制,可快速响应警报信号而不会延迟。面板本身由看门狗定时器监控,每次数据通过其循环运行程序时,看门狗定时器都会重新启动,以防止触发脉冲故障时出现故障。如果发生干扰,只有一个插件单元会因并行操作而无法运行,并且可以在不中断操作的情况下更换有缺陷的组件。FMZ 4100 包含早期 Minimax 设备的基本功能,并符合现代安全系统要求,具有探测器识别、大型 LC 显示屏、报告打印机、状态和干预系统以及与建筑管理系统的接口。这可以快速评估警报以采取预防措施。该面板配备了广泛的分析软件,可区分报警信号和杂散信号,指导用户完成操作阶段,以最大限度地减少错误操作或压力影响的异常行为。FMZ 4100 符合最高安全要求,遵守有效的准则、规范和法规,如 VDE 和 EN 54,并获得德国财产保险协会的批准。面板的模块化设计允许扩展,在其最小的基本设计 (GAB 32) 中可以容纳 2 x 32 个火灾报警组和 32 个主要控制组。通过添加额外的插入式区域模块,FMZ 4100 火灾报警系统可以扩展到最多 3072 个组。主系统控制这些模块,而它们作为从属单元独立运行。该系统可以与最多 8 个立式机柜组合以实现这一总容量。FMZ 4100-GAB 32 型号具有 32 个自动和接触式火灾报警区域,以及用于电气监控和功能报警设备的主控制组。15U 壁挂式机柜提供 128 个自动和接触式火灾报警区以及主控制组。直立式机柜提供线路端接卡,以将每个组连接到线路卡。使用一张线路卡,可以为自动火灾报警、接触式火灾报警和主控制组提供、评估和监控四个报警组。系统将数字化报警信号记录在火灾控制面板中,然后将其与非易失性存储器中的编程值进行比较。如果结果为阴性,则产生报警信号或干扰信号。冗余报警电路确保即使控制系统因干扰或故障而发生故障也能持续运行。此外,探测器识别系统 (ZID-V) 使用微控制器和二次网络数据请求提供有关探测器位置和类型的实时信息。分析软件检查探测器信号的准确性,对其进行评估,并通过 FIFO 电路将结果异步传输到分析单元,结果显示在 8 x 40 字母数字 LC 显示屏上。ZID-V 系统与报告打印机等其他组件相辅相成,形成一个综合信息系统,可快速引入和部署。灭火系统依靠果断和适当的措施才能正常运作。“灭火控制”组件用于管理单区或多区灭火系统,独立于连接到火灾探测控制面板的其他系统运行。每个灭火区都由一个独立运作的灭火控制卡控制,该卡监控和控制探测器、释放装置和报警系统等重要组件。在发生警报时,灭火控制系统会记录探测器信号,发出火灾警报,并激活预编程的控制功能以启动灭火系统。火灾探测控制面板 FMZ 4100 可使用特殊配置程序针对不同应用进行编程,该程序将输入的特性转换为微控制器可理解的“语言”。这提供了最大的灵活性,尤其是在扩展现有系统时。通过现代下拉菜单技术和易于理解的输入说明,编程变得简单。火灾探测控制面板 FMZ 4100 还可以配备免费的可编程继电器,以便进一步组织警报,例如断开空调、中断制造过程、打开排烟挡板等。使用 Minimax 配置程序为每个特定系统确定继电器的操作和逻辑组合。标准功能包括由警报、预报警、干扰触发的操作,以及火灾探测器组的断开。火灾探测控制面板 FMZ 4100 具有标准串行接口,用于连接外部设备(如报警和图形报告系统或打印机),从而实现与上级管理系统的通信。火灾探测控制面板 FMZ 4100 可以通过串行接口与其他面板通信,为中继器面板中的 LED 控制提供 768 个可编程输出。它还具有串行接口,用于将数据传输到台式打印机等设备。该面板提供额外的接口,用于连接消防队控制面板和公共主报警系统,从而能够自动将报警信号传输到消防部门等外部服务。FMZ 4100 旨在适应特殊应用,例如用于木工或喷漆等行业的火花熄灭系统,以及计算中心设备保护。这些定制系统可以集成,而无需额外的分析电子设备,从而确保无缝运行,并具有可调节灭火时间和监测灭火剂供应等功能。气体探测器是一种模块化组件,可轻松集成到 FMZ 4100 中。该自主子系统持续监测气体浓度,当浓度超过预设限值时触发外部设备激活。所有测量数据都记录在 FMZ 4100 中,即使经过长时间后也可以进行事件追踪。控制面板的方案包括消防队操作面板、报告打印机和以 FMZ 4100 为核心的建筑集成。FMZ 4100 火灾探测控制面板多区域 CO2 灭火控制系统,用于喷漆厂和消防队钥匙箱,用于防火。FMZ 4100 面板采用多区域系统,具有自动释放、EMI 保护和光学/声学警报。它还包括用于探测器组的现场端接卡和主 CPU 外围设备评估和控制。附加功能包括: - 自动探测器 - 气体探测 - 浓度显示和操作面板 - 灭火系统,如大水灭火、泡沫/粉末灭火、火花灭火、预作用喷水灭火系统和氩气灭火系统 - Minimax 探测器收集 - 机械关闭排烟口解锁 - 带评估和控制系统的数字系统监控。 - 静态电流监控 - 自动和接触式探测器的探测器识别系统。 - EMI 保护 用于消防的气体探测系统 • 电源:15 V、12 V、5 V、24 V DC • 电池类型:免维护密封电池 (2 x 12 V)、耐深度放电、容量范围特定 • 应用:30 W/60 VA、1.5 A、250 V • 温度范围:-5°C 至 +40°C • 操作区域:干燥区域,限制进入 (G 29013) • 具体数据:+ 串行接口:RS 232C + 控制继电器数量:全套 + 外壳类型:壁挂式,32/32/321(2 x 80U 旋转框架),RAL 7032,灰色,结构化 + 直立机柜:31U、40U 和 128U(RAL 7032、灰色、结构化)• 尺寸:+ 525 x 709 x 275 毫米(32/96/961)+ 800 x 1600 x 500 毫米(128/128/1281)+ 800 x 2060 x 600 毫米(40U)• IP 等级:42、54 • 完整设备重量(不含电池):分别约 48 千克、135 千克和 160 千克 • 颜色:灰色 Minimax GmbH & Co. KG,位于德国巴特奥尔德斯洛 Industriestrasse 10/12,可致电 +49 45 31 8 03-0 或传真 +49 45 31 8 03-2 联系。电子邮件查询可发送至 [email protected],网站访问者可在 www.minimax.de 上获取更多信息。该公司持有 VdS 认证,符合 ISO 9001 F 15e/2.96/2/01.05/HMB 2 标准,编号为 S 89 201 1。该文本在德国印刷,概述了以下详细信息:四组自动探测器、七组接触探测器、四个主要控制组和八个用于非监控组的免费可编程继电器。