这项工作得到了国家科学技术重大项目(2022ZD0114900)的部分支持Horizon Europe框架通过可触及的项目(101092518)。(Zihang Zhao和Yuyang li对这项工作也同样贡献。相应的作者:Lecheng Ruan和Yixin Zhu。)Zihang Zhao和Yixin Zhu曾与中国北京大学100871北京大学的人工智能研究所一起(电子邮件:zhaozihang@stu@stu.pku.edu.edu.cn; yixin.zhu@pku.edu.edu.cn)。Yuyang Li和Zhenghao Qi曾在中国北京大学,北京大学,北京大学和北京通用人工智能研究所,中国北京100080,中国以及自动化部,北京大学,北京大学,北京大学,北京大学,北京大学,北京100084,中国(电子邮件): {liyuyang20,qi-zh21}@mails.tsinghua.edu.cn)。Wanlin Li与中国北京100080的北京通用人工智能研究所合作(电子邮件:liwanlin@bigai.ai)。Lecheng Ruan曾在中国北京100871的北京大学工程学院以及中国武汉430075的PKU-Wuhan人工智能研究所(Ruanlecheng@ucucla.edu)任职。Zihang Zhao和Lecheng Ruan在这项工作中也部分地在北京通用人工智能研究所中。数字对象标识符(DOI):请参阅此页面的顶部。Kaspar Althoefer曾在英国伦敦皇后大学伦敦皇后大学工程与材料科学学院内的高级机器人中心 @皇后玛丽(Queen Mary),伦敦E1 4NS(电子邮件:k.althoefer@qmul.ac.uk)。
磷通过增强生理功能并刺激生物学活性(例如结节,氮固定和氮和养分吸收)在调节植物的许多代谢活性中起着至关重要的作用。磷溶解细菌的接种剂是一种环保的替代技术,可占据地影响土壤可持续性和植物生长。 大多数North Shewa高地区域的特征是低可用的磷,主要是酸性的,并且表现出强烈的磷吸收。 这项研究的目的是隔离和鉴定植物溶解细菌与小扁豆的根际溶解细菌,并表征其磷酸盐溶解活性。 在生物学系微生物学实验室中进行了文化,生化,生理微生物分析。 pikovskaya的培养基被用来分离,筛选和维持磷酸盐溶解细菌。 磷酸盐溶解细菌是用磷酸三 - 磷酸盐作为指示板中磷的唯一来源。 15种磷酸盐溶解细菌是从小扁豆根根际土壤样品中等同的,其中六种是指定为PSBYE,PSBYR,PSBYM,PSBYM,PSBYL,PSBW和PSBSW的最有效的植物溶解剂。 与未接种对照相比,所有分离株都特别是磷酸三 - 磷酸盐。 从分离株PSBYL观察到最高的磷酸化,值为10.61mg/50ml,其次是PSBW,值为9.08 mg/50ml。磷溶解细菌的接种剂是一种环保的替代技术,可占据地影响土壤可持续性和植物生长。大多数North Shewa高地区域的特征是低可用的磷,主要是酸性的,并且表现出强烈的磷吸收。这项研究的目的是隔离和鉴定植物溶解细菌与小扁豆的根际溶解细菌,并表征其磷酸盐溶解活性。在生物学系微生物学实验室中进行了文化,生化,生理微生物分析。pikovskaya的培养基被用来分离,筛选和维持磷酸盐溶解细菌。磷酸盐溶解细菌是用磷酸三 - 磷酸盐作为指示板中磷的唯一来源。15种磷酸盐溶解细菌是从小扁豆根根际土壤样品中等同的,其中六种是指定为PSBYE,PSBYR,PSBYM,PSBYM,PSBYL,PSBW和PSBSW的最有效的植物溶解剂。与未接种对照相比,所有分离株都特别是磷酸三 - 磷酸盐。从分离株PSBYL观察到最高的磷酸化,值为10.61mg/50ml,其次是PSBW,值为9.08 mg/50ml。pH值的降低与PSB分离株在PVK肉汤中的三磷酸溶解水平相关。在肉汤中生长时,pH值降至4.64,这表明有机酸的产生可能是磷酸盐溶解化的主要机制。
啮齿动物中的一个有趣的共同特征是它们的晶须,他们可以积极地移动以感知环境周围的接触。这些晶须具有各种功能,例如从对象中提取轮廓,为机器人提供位置估算,识别纹理特征以及积极避免碰撞。基本上,它为低计算成本的机器人提供了一种非侵入性的触觉感知,尤其是在非结构化,混乱和视力障碍的环境中有益的。实现实时的被动接触估计并确保强大的机械设计对于这种传感器至关重要。以前的方法通常依赖于6轴力/扭矩传感器[1],压电电阻[2]或其他与力相关的传感器。但是,这些解决方案通常是庞大而挑战的规模。相比之下,磁透射的晶须[3]提供了更紧凑且易于集成的解决方案,能够用平行的晶须形成阵列。尽管如此,基于磁通量在根周围的磁通量变化而准确地对接触运动进行建模并沿晶须轴进行定位,这在很大程度上取决于强大的设计。我们已经构建了一种产生提示联系估计的方法,但是由于缺乏对物体形状的先验知识,基于切向接触状态估计的当前方法仍然遭受动态误差[4]。
虽然核分型,鱼类,RT-PCR和微阵列是检测融合基因的常规研究技术,但它们都有局限性。随着基于NGS的方法的改进,DNA和RNA测序迅速成为选择方法。ngs面板促进了同时发现新的变化,以及已知的突变以及基因组研究的结构改变。这种突变检测能力的发展快速增长已超越SNV和Indels,现在包括易位。
摘要 - Tactile Sensing为增强当今机器人的相互作用功能提供了一个有希望的机会。Biotac是一种常用的触觉传感器,使机器人能够感知并响应物理触觉刺激。然而,传感器的非线性在模拟其行为时构成了挑战。在本文中,我们首先研究了使用温度,力和接触点位置来预测传感器输出的生物酸模拟。我们表明,使用BioTAC温度读数的培训不会在部署过程中产生准确的传感器输出预测。因此,我们测试了三个替代模型,即XGBoost回归剂,神经网络和变压器编码器。我们在没有温度读数的情况下训练这些模型,并对输入向量的窗口大小进行详细研究。我们证明,我们比基线网络实现了统计学上的显着改进。此外,我们的结果表明,在此任务中,XGBoost回归剂和变压器的表现优于传统的馈送神经网络。我们在https://github.com/wzaielamri/optimization Biotac仿真上在线提供所有代码和结果。索引术语 - Biotac,Xgboost,变压器,触觉感知
我们的 8 种感觉:远感:视觉、听觉近感:味觉、嗅觉、触觉、本体感觉、前庭加:内感觉前庭:平衡感、保持头部和身体姿势、确定运动方向和速度、感觉身体在空间中的运动、内耳。本体感觉:帮助孩子建立身体意识的感觉。力度感,确定身体在空间中的位置,控制四肢,感觉力量或重量。内感觉:知道身体内部发生了什么的感觉。我们利用近感来滋养感官本体感觉活动 = 阻力活动瑜伽、身体袜、蹦床、治疗球、加重球。• 用于进入恰到好处的状态• 用于组织大脑和身体• 用于创造身体意识前庭活动 = 头部离开直立位置的活动 - 跑步、跳跃秋千、动物散步、滑板车、在治疗球上弹跳。 • 用于警示孩子(将头部移出多个位置) • 用于安抚孩子(头部朝一个线性方向移动) 触觉活动 = 涉及触摸的活动 • 使用增加的触觉输入来提高我们接受触觉输入的能力 • 用于获得调节和减轻压力(深度压力) • 用于警示孩子(轻触) 家庭感觉策略: • 使用图片时间表 • 避免匆忙。尽量减少屏幕时间(电视、视频游戏、电脑)。睡前 1 小时不要看屏幕。 • 在时间表中允许进行各种运动活动。 • 在家中安全的地方。 • 对肌肉和关节进行深度压力的活动始终对神经系统有益。 • 当孩子变得苦恼或失调时,少说话。 • 在 You Tube 上观看梅宁夫人的人行道粉笔感觉运动通路 #2。
摘要 - 由于其在国内和工业领域中的广泛应用,因此在机器人技术中,孔洞操纵一直是一个长期存在的问题。由于感知和建模的进步,可变形的对象操纵吸引了越来越多的关注。本文重点介绍了这些问题的交集,其中必须将一个孔变形以允许钉入口。此任务的常见国内应用是将衣架穿过T恤的领口将其悬挂。我们证明,通过使用来自Gelsight传感器的多模式触觉反馈可以降低问题的复杂性。高分辨率接触检测有助于将掌握到T恤上合适的位置。使用触觉反馈跟踪力轨迹,我们的算法可以操纵大小和刚度的T恤,以使它们的领口封闭衣架。我们的实验结果表明与理论分析保持一致。我们预计我们提出的方法将更广泛地适用于需要同时估算和执行弹性对象的力轨迹的其他问题。
摘要本研究介绍了使用双向和自动回归变压器(BART)和向量量化的变分自动编码器(VQ-VAE)的文本条件触觉图形生成模型的开发。该模型利用了潜在空间的修改组织,分为两个独立的组件:文本和图形。该研究通过使用自定义样本扩展培训数据集来解决触觉图形样本有限的挑战,从而增强了模型将文本信息转换为图形表示的能力。提出的方法改善了视障人士的触觉图形创建,从而在合成的触觉图形中提供了增加的可变性,可控性和质量。这一进步增强了包容性教育材料生产过程的技术和经济方面。
酿酒酵母(通常称为芽酵母)是一种单细胞真核生物,用作研究广泛的生物学过程的模型,因为其简单,快速生长和基因操纵性。此外,它也是一种无价的工业微生物,用于生产面包,啤酒和药品。为了进一步使该器官适合各种应用,全球一组科学家启动了合成酵母基因组项目(SC2.0项目),以通过设计师染色体为其提供基因组大修。1通过实施众多故意修改,SC2.0项目试图调查与染色体特性,基因组组织,基因组功能和进化有关的许多原本具有挑战性和基本问题。
随着个性化医疗保健1-3的迅速发展,虚拟现实(VR) /增强现实(AR)4-6和类人形机器人7-9,光学触觉传感器由于其高剂量,高精度,快速响应,快速响应和反电磁干扰10-14引起了密集的关注。通常,光学触觉传感器由光源,包装的传感元素和检测器组成。通过监视使用二氧化硅光纤15-18,聚合物光导导/纤维19-22,19-22,水凝胶光纤23-25和光学微米(226)26 222的2222,通过监视大量高性能触觉传感器的变化,谐振峰或干扰峰的变化,已证明了大量的高性能触觉传感器。中,MNF具有出色的光学和质量特性,包括强烈的逃生场,低光学损失,波长尺度直径,小弯曲 -
