参考文献 • Fisher SE, Vargha-Khadem F, Watkins KE, Monaco AP, Pembrey ME。与严重言语和语言障碍有关的基因定位。Nat Genet。1998 年 2 月;18(2):168-70。doi: 10.1038/ng0298-168。勘误表:Nat Genet 1998 年 3 月;18(3):298。PubMed 上的引用 (https://pubmed.ncbi.nlm.nih.gov/9462748) • Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP。叉头结构域基因在严重言语和语言障碍中发生突变。Nature。2001 年 10 月 4 日;413(6855):519-23。doi: 10.1038/35097076。 PubMed 上的引文 (https://pubmed.ncbi.nlm.nih.gov/11586359) • Liegeois FJ、Hildebrand MS、Bonthrone A、Turner SJ、Scheffer IE、Bahlo M、Connelly A、Morgan AT。FOXP2 基因内缺失的早期神经影像学标记。Sci Rep. 2016 年 10 月 13 日;6:35192。doi:10.1038/srep35192。PubMed 上的引文 (https:// www.ncbi.nlm.nih.gov/pubmed/27734906) • MacDermot KD、Bonora E、Sykes N、Coupe AM、Lai CS、Vernes SC、Vargha-Khadem F、McKenzie F、Smith RL、Monaco AP、Fisher SE。鉴定出 FOXP2 截断是导致发育性言语和语言障碍的新原因。Am J Hum Genet。2005 年 6 月;76(6):1074-80。doi: 10.1086/430841。2005 年 4 月 22 日电子版。PubMed 上的引文(https://pubmed.ncbi.nlm.nih.gov/15877281)或 PubMed Central 上的免费文章(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196445/)• Morgan A、Fisher SE、Scheffer I、Hildebrand M。FOXP2 相关言语和语言障碍。2016 年 6 月 23 日 [2023 年 1 月 26 日更新]。引自:Adam MP、Feldman J、Mirzaa GM、Pagon RA、Wallace SE 和 Amemiya A,编辑。GeneReviews(R)[Internet]。西雅图 (WA):华盛顿大学,西雅图;1993-2025 年。可从 http://www.ncbi.nlm.nih.gov/books/NBK368474/ PubMed 上的引文获取(https://pubmed.ncbi)。
言语感知可能很困难,特别是对于老年人而言。尽管言语感知在社交互动中非常重要,但这些困难背后的机制仍不清楚,治疗方法也很少。虽然一些研究表明皮质听觉区域的衰退可能是这些困难的标志,但越来越多的研究报告称,听觉处理网络以外的区域也出现了衰退,包括参与言语处理和执行控制的区域,这表明可能存在广泛的潜在神经紊乱,尽管对于潜在的功能障碍尚无共识。为了解决这个问题,我们进行了两个实验,研究了在操纵背景噪音和说话者变化时言语感知的年龄差异,这两个因素已知会对言语感知有害。在实验 1 中,我们研究了 88 名年龄在 19 至 87 岁之间的健康参与者的言语感知、听力和听觉注意力之间的关系。在实验 2 中,我们使用磁共振成像 (MRI) 检查了皮质厚度和 BOLD 信号,并使用简单的中介方法将这些测量值与实验 1 中的 32 名参与者的语音感知表现联系起来。我们的结果表明,即使考虑到听力阈值和两项听觉注意力指标,语音感知也会随着年龄的增长而显著下降。与年龄相关的噪声环境下语音感知下降与听觉和语音处理区域(包括颞上皮层、腹侧运动前皮层和下额叶)以及执行控制区域(包括背侧前岛叶、前扣带皮层和内侧额叶皮层)的皮质变薄有关。此外,我们的结果表明,与年轻人相比,老年人的语音感知表现与右侧颞上皮层的大脑反应减弱有关,与老年人的左侧颞前皮层对噪音的反应增强有关。与年轻人相比,说话者的多变性与老年人的不同激活模式无关。总的来说,这些结果支持了老年人噪音障碍的言语感知能力存在弥漫性而非局限性功能障碍的观点。
隐性言语 (CS) 是指不发出任何声音或动作而自言自语。CS 与多种认知功能和障碍有关。通过脑机接口 (BCI) 重建 CS 内容也是一项新兴技术。但 CS 是显性言语 (OS) 的截断神经过程还是涉及独立模式仍存在争议。在这里,我们进行了一个同时进行 EEG-fMRI 的说话实验。它涉及 32 名参与者,他们公开和隐蔽地生成单词。通过将 fMRI 的空间约束整合到 EEG 源定位中,我们精确估计了神经活动的时空动态。在 CS 期间,EEG 源活动定位在三个区域:左侧中央前回、左侧辅助运动区和左侧壳核。虽然 OS 涉及更多大脑区域且激活更强,但 CS 的特点是左侧壳核中事件锁定激活较早(峰值为 262 毫秒对比 1170 毫秒)。左壳核还被确定为 OS 和 CS 功能连接 (FC) 网络中唯一的中心节点,而在 CS 期间,优势半球中与言语相关的区域的 FC 强度较弱。路径分析揭示了显著的多变量关联,表明左壳核中较早的激活与 CS 之间存在直接关联,这是由与言语相关的区域的 FC 减少介导的。这些发现揭示了 CS 的特定时空动态,为 CS 机制提供了见解,这些见解可能与未来治疗自我调节缺陷、言语障碍和开发 BCI 语音应用有关。
言语的儿童失语(CAS)是原型严重的儿童言语障碍,其特征是运动编程和计划置换。遗传因素对CAS病因产生了实质性贡献,在三分之一病例中鉴定出单基因的致病变异,这意味着迄今为止有20个单个基因。在这里,我们旨在确定与CAS确定的70个无关的概率中的分子因果关系。我们进行了三重奏基因组测序。我们的生物信息学分析检查了单核苷酸,indel,拷贝数,结构和短串联重复变体。我们优先考虑从头开始产生的适当变体或基于计算机预测中会损害的遗传。我们确定了18/70(26%)概率的高置信变体,几乎使CAS的当前候选基因数量翻了一番。在18种变体中,有3个影响了SETBP1,SETD1A和DDX3X,因此确定了它们在CAS中的作用,而其余15个则发生在以前与该疾病不相关的基因中。从头出现了15个变体,三个变体继承。我们为儿童语音障碍的生物学提供了进一步的新见解,强调了CAS中染色质组织和基因调节的作用,并确认与CAS相关的基因在大脑发育过程中得到了共表达。与其他具有重大新变异负担的神经发育障碍相比,我们的发现证实了诊断产量可比甚至更高的诊断产量。数据还支持越来越明显的基因之间的重叠,这些基因赋予了一系列神经发育疾病的风险。了解CAS的病因基础对于结束诊断性的奥德赛至关重要,并确保受影响的个体有望进行精确的医学试验。
语音运动控制的 DIVA 模型发音器官速度方向 (DIVA) 模型是一个人工神经网络,可定量描述语音运动控制背后的计算(Guenther,1995;Tourville 和 Guenther,2011;E. Golfinopoulos、Tourville 和 Guenther,2010;有关详细说明,请参阅 Guenther,2016)。它包含一个模拟组件网络,这些组件代表负责产生语音的大脑结构。该模型包括一个模仿声道行为的发音合成器,神经网络学习控制合成器发音器官的运动,以产生可理解的语音。我们在此重点关注模型的神经计算和发展过程的更高级别处理,避免使用数学方程和计算机实现细节,以方便处理。为了理解该模型,我们首先将 定义为大脑中具有自己优化的运动程序的“语音块”。这些块可以是音素、音节和/或单词,具体取决于所考虑的年龄和语言经验。根据许多先前的提议(例如,Kozhevnikov & Chistovich,1965;Levelt,1993;MacNeilage & Davis,1990),并得到音素组合分布分析(Sun & Poeppel,2022;Kessler & Treiman,1997)的支持,我们建议
• 互联网论坛是有用的在线讨论网站。您可以通过发布消息与其他成员交谈,讨论通常按主题组织。您可以向其他成员提问并邀请他们回答,评论其他成员的帖子,或者只是分享您对某个问题的经验。论坛是结识新朋友的好方法,特别是如果您不经常外出或住在偏远地区。
媒体对所有媒体公司的声明2024年3月14日,自由州工厂重新启动以促进经济并创造就业机会,并在两周前举行的成功的自由州投资会议之后,自由州政府启动了翻新计划,以升级2023年3月12日在Botshabelo Industrial Park上升级国有工厂。这项倡议来自自由州政府的投资会议承诺,该省将着手进行变革性的模式,以创造有利的生态系统,以实现业务增长和创新,重塑经济格局,以应对社会经济挑战,失业,贫困和贫困,以提高人们的生活。通过Destea,自由州政府专注于在Qwaqwa的Botshabelo升级工业园区,其中包括Maluti在Harrismith的Phofung Procement Croppings Promance Zone,以允许投资者扩大其服务并创造就业机会。在自由州工业园区的18个820个工作中,Botshabelo工业园有6000人工作,如果可以最佳利用工厂,则有可能增加5000个工作岗位。在发布当天,纳利迪·帕哈洛(Naledi Phahlo)女士是卫生解决方案的创始人兼总监 - 在波特沙贝洛工业园区的一家翻新工厂之一,他为家庭和工业用途,灌木丛,差异人,差异化产品以及汽车清洁产品以及PPE企业提供的企业企业提供了友好的业务,并在她的企业中提供了自由企业,并提供了自由企业,该公司的工业用途,工业用途,工业用途和工业用途。“我在我的企业家之旅中真正见证了上帝的忠诚。我很荣幸成为年轻的商人之一,他在簿记培训中见证了自由州政府的协助,无论是财务和非财务支持,以维持我的业务,为经济做出贡献并创造就业机会。我是Destea 2023年青年商务推销计划的获胜者,并将业务价值数量为R120000。此外,我还得到了电源混合设备的协助,并提供了成为Saitex参展商的一部分的机会。为非洲买家和卖家提供市场访问展览,我会见了来自赞比亚的潜在买家,这些买家有兴趣批量购买我的产品。然而,为了完成合同的最终确定,他们访问了我的公司,并意识到操作空间没有达到标准,因为我是从密封的空间中运营的,因此使他们担心并怀疑我的能力。
Fuh‐Cherng Jeng 博士,医学博士,哲学博士 jeng@ohio.edu 听觉电生理实验室 我们的实验室位于俄亥俄大学康复与通信科学学院听觉言语与语言科学系新装修的空间内。实验室是一座最先进的设施,其设备可用于开展基础和应用研究项目。我们致力于研究和了解我们的耳朵和大脑如何编码正常和病理人群中从简单(例如纯音)到复杂(例如语音)的感官信息。我们的研究重点是事件相关和认知潜力,以此来更好地了解大脑对声音的反应活动。我们最常用的反应是:1. 幅度调制和频率跟踪反应,2. 词汇音调引发的反应,以及 3. 认知听觉潜力。
言语的儿童失语(CAS)是原型严重的儿童言语障碍,其特征是运动编程和计划置换。遗传因素对CAS病因产生了实质性贡献,在三分之一病例中鉴定出单基因的致病变异,这意味着迄今为止有20个单个基因。在这里,我们旨在确定与CAS确定的70个无关的概率中的分子因果关系。我们进行了三重奏基因组测序。我们的生物信息学分析检查了单核苷酸,indel,拷贝数,结构和短串联重复变体。我们优先考虑从头开始产生的适当变体或基于计算机预测中会损害的遗传。我们确定了18/70(26%)概率的高置信变体,几乎使CAS的当前候选基因数量翻了一番。在18种变体中,有3个影响了SETBP1,SETD1A和DDX3X,因此确定了它们在CAS中的作用,而其余15个则发生在以前与该疾病不相关的基因中。从头出现了15个变体,三个变体继承。我们对儿童语音障碍的生物学提供了进一步的新见解,突出了CAS中染色质组织和基因调节的作用,并确认与CAS相关的基因在大脑发育过程中被共表达。与其他具有重大新变异负担的神经发育障碍相比,我们的发现证实了诊断产量可比甚至更高的诊断率。数据还支持越来越明显的基因之间的重叠,这些基因赋予了一系列神经发育疾病的风险。了解CAS的病因基础对于结束诊断性的奥德赛至关重要,并确保受影响的个体有望进行精确的医学试验。
J 的形象受到质疑,有时甚至受到威胁,而母亲和姑姑则试图不惜一切代价挽救她、提升她。最终,大家齐心协力,共同洗刷形象,治愈伤口。随着战术资源的出现,让步-对抗运动、辩护和重新表述成为最小化的机制,减轻所犯的错误,同时出现价值化策略,例如,极端合作,以强化和真实地塑造自治的社会形象,在西班牙语案例中,D. Bravo 表示,这是“展示自己独创性并意识到自己的优良品质”的策略,[如厄瓜多尔人对祖先的最大尊重(Placencia,1996)或盎格鲁-撒克逊文化对隐私的热情(Wierzbicka,1991)]。