对于特定设备,存在大量的可靠性经验。它包含两种计算组件级故障率的基本方法,即“零件应力法和零件计数法”。零件计数法只需要有限的信息(例如组件类型、复杂性和零件质量)即可计算零件故障率。手册的零件计数部分是通过将更复杂的零件应力法的模型因子分配给通常预期的略微保守的估计值而得出的。所有特定的默认值均在手册的附录 A 中提供。零件应力法需要更多信息(例如外壳或结温以及电气工作和额定条件)来执行故障率计算。在手册制定之前,每个承包商都有自己独特的数据集,必须完全了解其来源,然后才能进行有意义的设计比较。
摘要 — 充电状态 (SOC) 估计对于电池的最佳利用和保护非常重要。本文实现并比较了神经网络 (NN) 算法和库仑计数法在电池充电状态 (SOC) 估计中的性能。该算法应用于电动汽车的电池管理系统 (BMS)。准确的 SOC 信息可以避免电池过度充电和过度放电,从而延长电池寿命。此外,控制系统使用准确的 SOC 信息做出合理的决策,以节省电动汽车的能源。与库仑计数法相比,NN 模型的优势在于它可以在 BMS 硬件中实现,其中可以在线测量电流、电压和温度。这种神经网络方法的特点是它优化了两个重要的超参数以实现合理的 MAPE 误差。使用两个城市驾驶条件的数据集测试了所提出方法的性能。结果表明,两种方法(NN 和库仑计数)都可以以合理的误差(<6%)预测 SOC。然而,对于这两个数据集,库仑计数的性能都优于神经网络 MAPE。
3.6.2 裂纹扩展................................................................................................................59 3.6.3 临界裂纹长度或失效...............................................................................................61 3.7 安全寿命和故障安全定义及设计理念........................................................................62 3.7.1 安全寿命设计.............................................................................................................63 3.7.2 故障安全设计和损伤容限分析.........................................................................................64 3.7.2.1 安全寿命和故障安全设计的简要示例.........................................................................64 3.8 焊接和裂纹起始点的介绍....................................................................................................66 3.8.1 残余应力.............................................................................................................................67 3.8.2 焊接缺陷.............................................................................................................................68 3.8.3 应力集中.............................................................................................................................68 3.8.4 钢和合金中的裂纹起始点....................................................................................................69铝................................................................................69 3.8.5 铝制零件的补焊....................................................................................70 3.9 高速船用新型铝合金及焊接技术........................................................70 3.9.1 新型海洋级铝合金,牌号 5383.........................................................................70 3.9.1.1 5383 的疲劳强度.........................................................................................................72 3.9.2 新型海洋级铝合金,牌号 RA7108.........................................................................74 3.9.3 新型海洋级铝合金 5059.........................................................................................76 3.9.4 搅拌摩擦焊接.........................................................................................................77 3.10 参考文献.........................................................................................................................79 4.DNV 和其他行业疲劳分析标准.........................................................................................115 5.1 DNV 高速船疲劳分析分类说明 30.9 ................................116 5.2 协助船舶设计师的其他行业标准.....................................................118高速铝船的疲劳设计................................................................................................................81 4.1 Palmgren-Miner 累积损伤疲劳评估....................................................................................82 4.2 确定要分析的细节................................................................................................................84 4.3 加载历史的开发................................................................................................................86 4.3.1 船长和速度对高速船加载历史的影响.......................................................................87 4.3.2 用于船舶加载历史的概率分布....................................................................................89 4.3.3 雨流和储层循环计数法....................................................................................................90 4.3.4 雨流循环计数法.............................................................................................................91 4.3.5 储层循环计数法.............................................................................................................91 4.4 应力直方图的开发.....................................................................................................................92 4.4.1 使用频谱分析方法开发应力直方图.....................................................................................93 4.5 应力计算和应力集中................................................................................................95 4.5.1 行业规范中的设计应力...............................................................................................95 4.5.2 关于应力的进一步讨论..............................................................................................96 4.5.2.1 结构中的名义应力.........................................................................................................97 4.5.2.2 结构应力.........................................................................................................................98 4.5.2.3 热点应力.........................................................................................................................100 4.5.2.4 缺口应力.........................................................................................................................100 4.5.2.5 焊接对应力的影响....................................................................................................101 4.5.2.6 制造缺陷及其对名义应力的影响....................................................................................102 4.6 确定适当的 S/N 曲线.....................................................................................................103 4.6.1 程序.....................................................................................................................104 4.7替代应力直方图方法................................................................................................112 4.8 参考文献....................................................................................................................113 5.
然后解析数据文件并加载其中的所有数字。数值可以按照用户方便的任何方式排列在文件中 — 每行一个或多个 — 但必须用任何非数字字符或非数字字符串分隔开(整个文件中不必相同)。数字可以以十进制或科学计数法表示,在本例中使用 e 或 E 表示适当的十的幂。例如,1983.76 也可以写成 1.98376e3 或 1.98376E3 。文件解析完成后,将显示已加载的值的数量以确保其符合用户的期望。以这种方式提供的样本值总数(对所有提供样本的输入量求和)不能超过大约 2400000。如果达到此限制,则计算开始后就会出现错误消息。
还在没有风荷载和基准激励的情况下研究了舷梯在运行周期(升降、回转和伸缩)中的振动,随后用于确定 Ampelmann 系统的疲劳寿命。在舷梯伸缩运动过程中,观察到当 T 型臂架分别缩回和伸展时,振动周期减小和增加。根据应力寿命法进行疲劳寿命分析,并使用雨流循环计数法获得应力循环次数。结果表明,Ampelmann 舷梯可承受高达 10 6 次运行循环。然而,需要强调的是,在运行过程中,外部载荷始终存在。因此,舷梯的疲劳寿命将低于预期的运行循环次数。
摘要:本文建立了一项准确且可靠的研究,用于估计锂离子电池的充电状态(SOC)。准确的状态空间模型用于确定电池非线性模型的参数。非洲秃鹰优化器(AVOA)用于解决识别电池参数以准确估算SOC的问题。一种混合方法由具有自适应无知的卡尔曼过滤器(AUKF)的库仑计数法(CCM)组成,以估计电池的SOC。在不同的温度下,对电池进行了四种方法,在包括负载和电池褪色之间有所不同。数值模拟应用于2.6 AHR松下锂离子电池,以证明混合方法对电荷估计的有效性。与现有的混合方法相比,建议的方法非常准确。与其他策略相比,所提出的混合方法实现了不同方法的最小误差。
摘要——基于锂离子 (Li-ion) 电池的电池组被广泛用于许多应用中。电池管理系统 (BMS) 是根据特定输入描述电池的状态,以获得可用于系统控制的多个输出。本文介绍了 DC/DC 降压转换器在锂离子电池充电中的应用和控制。可以估计描述电池充电容量状态的主要参数是充电状态 (SoC)。SoC 是根据电池开路电压 (OCV) 和库仑计数法估计的。控制 SoC 限值以避免电池过度充电。脉冲调整 (PA) 控制技术用于控制用于给锂离子电池充电的 DC/DC 降压转换器的开关。因此,在充电过程开始时,确保充电电流在允许的限度内恒定。因此避免过热,这可能会降低或损坏电池。MATLAB/Simulink 工具用于设计验证。模拟和实际结果令人鼓舞。移动应用程序旨在监控电池充电/放电参数。
摘要。功率流控制系统在具有光伏输入的直流微电网中发挥着重要作用,可为负载提供连续电力。由于太阳辐射和温度的波动,光伏模块的输出功率可能会下降,因此必须使用电池和公用电网来减少不良变化的负面影响。然而,需要一种有效的控制策略来确保不间断地向负载单元供电。本文提出了一种基于库仑计数法的充电状态电池功率估计技术的改进能量流控制。通过使用充电状态技术准确估计电池的可用功率,微电网能够确定是否需要在光伏模块的功率输出不足以满足负载需求时切换到电网。所提出的方法还消除了基于直流总线电压水平的方法来对电池进行充电或放电的需要,具有显著减少直流总线电压变化的优点。该方法的仿真结果表明,该方法提供了令人满意的控制性能,满足了负载需求。
简介:科学计数法和有效数字。不同系统中的单位。矢量:矢量回顾、矢量导数、线积分和面积分、标量的梯度。力学:坐标系。恒定加速度下的运动,牛顿定律及其应用,匀速圆周运动。涡旋运动,摩擦力。功和能量。势能、能量守恒、能源和我们的环境。静电和磁学:库仑定律、高斯定律、导体周围的电场、电介质。磁场。电流上的磁力。半导体物理学:半导体中的能级、空穴概念、本征区域和非本征区域、质量作用定律、P-N 结、晶体管。波和振荡:具有一个自由度的系统的自由振荡、经典波动方程。连续弦的横模。驻波。波的色散关系。光学与激光:光学和激光的基本介绍。衍射光栅。激光器,粒子数反转。谐振腔。量子效率。氦氖激光器、红宝石激光器和二氧化碳激光器。现代物理学:光电效应、康普顿效应、氢原子的玻尔理论、原子光谱、质量减小、德布罗意假设、布拉格定律、电子显微镜、塞曼效应、原子核、质能关系、结合能、核力和基本力、指数衰减和半衰期。