Sanjay 先生在美国山景城的卡内基梅隆大学获得了电气和计算机工程理学硕士学位。他拥有令人印象深刻的成就记录,包括共同开发了一款基于 NLP 的尖端拒绝方名单解决方案,该解决方案利用 FastAI/Pytorch 进行模型训练和实体评估,目前全球有超过 105,000 名用户在使用。Sanjay 先生还领导开发和推出了一款使用 Java/J2EE 和 Springboot 的贸易交易匹配金融应用程序,为法国巴黎银行在 35 个国家/地区创造了可观的收入。他还负责将五个新国家纳入全球金融产品,并通过数据库设计,将系统延迟和金融信息检索时间缩短了 28%。
电气工程与计算机科学系 ( https://catalog.mit.edu/schools/engineering/electrical- engineering-computer-science ) 和脑与认知科学系 ( https://catalog.mit.edu/schools/science/brain-cognition-sciences ) 提供联合课程,可授予计算与认知理学学士学位 ( https://catalog.mit.edu/degree-charts/computation-cognition-6-9 ),该课程侧重于脑科学、认知和机器智能的计算和工程方法这一新兴领域。课程设置灵活,可满足学生对该领域各种兴趣的需求 — 从受生物启发的人工智能方法到大脑中的逆向工程电路。该联合课程为学生的职业生涯做好准备,包括人工智能和机器学习的高级应用,以及系统和认知神经科学的进一步研究生学习。该项目的学生是两个系的正式成员,并有一名来自脑与认知科学系的学术顾问。
然而,在量子计算机中,信息的基本单位称为量子比特,当处于未观察状态时,它可以同时处于 0 和 1 状态。此外,经典比特是固态物理学通过晶体管发明的,而量子比特通常由原子级实体表示,例如光子、电子或原子核。这些实体具有不确定的属性,这意味着,当处于未观察状态时,该属性没有单一确定的值。例如,孤立电子的确切位置是不确定的。最好的方法是,对于空间中的每个点,为电子分配一个振幅,即形式为 re θi 的复数,其中 r 是其模数,θ 是其相位。事实证明,模数的平方与在该点观察到电子的概率成正比。然而,这并不意味着电子会选择任何一条路径。相反,如果不加以观察,它会选择所有可能的路径。当我们观察它时,它似乎只选择了一条路径。这种现象在经典的双缝实验中得到了证实:
注解。当前,世界各国许多政府机构和私营企业正奔向地球周围的外层空间,希望找到解决通讯、工业、安全、国防等领域问题的有效解决方案。此类行动通常涉及大量发射小型廉价卫星,而这反过来又会导致太空垃圾数量的增加。本文探讨了发达的哲学和高级系统模型如何有效地组织处于其发展和成长的不同阶段的分布式空间系统。空间捕获技术是通过高级递归移动代码对分布式环境进行并行映射而产生的,能够有效地为任何网络协议和大型卫星星座(主要是位于低地球轨道的卫星星座)的重要应用提供支持。本文介绍了一些技术解决方案的例子,用于在卫星之间建立基本的通信,从第一次通常是混乱的发射开始,到在不断增长的星座中分发和收集数据,即使卫星之间的通信不稳定且快速变化。该工作描述了在卫星间距离可预测的情况下如何组织和注册网络拓扑,以及固定的网络结构如何帮助解决复杂问题。这些结构以及与太空发展局新的多卫星、面向安全的架构相关的结构,可以有效地整合持续的地球观测和基于自传播移动情报的导弹跟踪和消除的共同水平的搜索。该技术的先前版本已在许多文章和六本书中描述,并已在世界各国开发和使用,而最新版本甚至可以在大学环境中有效实施。关键词:太空征服、卫星星座、太空捕获技术、通信协议、太空发展机构的新架构、运输、控制和跟踪级别。抽象的。目前,许多国家的政府机构和私营公司正纷纷涌入地球周围的太空,希望提供智能通信、工业、安全和防御解决方案。这通常涉及大量发射小型廉价卫星,这也导致了太空垃圾的增加。本文讨论了发达的高级系统哲学和模型如何有效地组织处于其发展和成长的不同阶段的分布式空间系统。简要介绍一下空间抓取技术,它基于分布式环境的并行模式匹配和高级递归移动代码,可以有效地提供任何网络协议和大型卫星星座的重要应用,特别是低地球轨道上的卫星星座。本文给出了一些基于技术的解决方案的例子,用于建立卫星之间的基本通信,从最初的、往往混乱的发射开始,到在不断增长的卫星星座中分发和收集数据,卫星之间的连接甚至不稳定且变化很快。它描述了如何在卫星之间的距离可预测的情况下组织和注册网络拓扑,以及固定网络结构如何帮助解决复杂问题。后者包括与新太空发展局的多卫星防御导向架构相关的问题,并允许有效整合其持续的地球监护观察和合作导弹跟踪和消除
示例 - 在机场的优化是具有量子优势的用例,慕尼黑机场的QAR-LAB已经确定了门分配问题(差距,优化问题,将飞行证人分配给门口)。在小规模上,我们使用QAOA对D-Wave系统的量子退火硬件以及公司Rigetti和IBM公司的量子计算机进行了建模和执行。对于2号航站楼机场的生产运营,根据QUBO建模计算了12,500 QUAT。这应该是逻辑Qubit,Google 2假设其超导技术需要1,000个物理量子来实施逻辑Qubis,麦肯锡3个名字1,000-10,000,这是技术特定技术的。与Tu Delft合作,我们考虑如何有效地进行误差校正,因此需要少于10 3-10 4的物理量子。此外,连贯性时间为
