摘要。基于深度学习的侧渠道分析代表了最强大的侧通道攻击方法之一。由于其在处理原始功能和对策方面的能力,它成为SCA社区的事实上的标准方法。最近的作品显着改善了来自各种观点的深度学习攻击,例如高参数调整,设计指南或自定义的neu-ral网络体系结构元素。仍然,对学习过程的核心 - 损失函数的核心已被不足。本文分析了现有损耗函数的局限性,然后提出了一种新型的侧道渠道分析优化损耗函数:焦距损耗比(FLR),以应对其他损失函数中观察到的识别缺陷。为了验证我们的设计,我们1)考虑了各种情况(数据集,泄漏模型,神经网络体系结构)和2)进行彻底的实验研究,2)与基于深度学习的侧渠道分析(“传统”的侧通道分析和侧通道分析的范围分析)进行比较。我们的结果表明,FLR损失在各种条件下都优于其他损失函数,而没有像最近的一些损失功能建议那样的计算开销。
抽象的基于卫星 - 长距离 - 无距离 - 空间量子密钥分布有可能实现全球量子安全通信网络。检测从空间发送的微弱量子光脉冲需要高度准确且健壮的经典计时系统才能从噪声中挑出信号,并允许对发送和接收的钥匙位进行对帐。对于这种高损耗应用,提出了基于DE Bruijn序列的断层 - 耐受性同步信号编码和解码方案。在实验室条件下测试了代表性的同步时间系统,并且即使在高损失下,它也证明了误差校正算法的高容差。还讨论了该解决方案的性能限制,并分析了方案和估计的计算开销的最大误差耐受性,从而可以在实际的时间系统上实现 - 芯片上实现。该解决方案不仅可以用于同步高损耗通道,例如卫星和地面站之间的通道,而且还可以扩展到具有低损耗,较高误差率的应用,而且需要可靠的同步,例如量子和非量子通信在地面上的自由行空间或光纤空间上。
文本到图像的扩散模型在可控图像生成领域取得了巨大成功,同时也带来了隐私泄露和数据版权问题。成员资格推断在此背景下作为检测未经授权数据使用的潜在审计方法而出现。虽然人们对扩散模型进行了一些研究,但由于计算开销和增强的泛化能力,它们并不适用于文本到图像的扩散模型。在本文中,我们首先发现文本到图像的扩散模型中的条件过拟合现象,表明这些模型倾向于在给定相应文本的情况下过拟合图像的条件分布,而不仅仅是图像的边际分布。基于这一观察,我们推导出一个分析指标,即条件似然偏差(CLiD),以进行成员资格推断,这降低了估计单个样本记忆的随机性。实验结果表明,我们的方法在各种数据分布和数据集规模上都明显优于以前的方法。此外,我们的方法表现出对过度拟合缓解策略(例如早期停止和数据增强)的卓越抵抗力。
摘要 — 基于人工智能 (AI) 的技术通常用于根据策略和机制对决策进行建模,这些策略和机制可以为许多交互实体带来最佳收益,这些实体通常会表现出对抗行为。在本文中,我们提出了一种支持 AI 的多接入边缘计算 (MEC) 框架,该框架由配备计算功能的无人机 (UAV) 支持,以促进物联网应用。首先,基于博弈论模型确定物联网节点向无人机安装的 MEC 服务器的最佳数据卸载策略的问题,同时考虑物联网节点的通信和计算开销。通过证明博弈是子模的,证明了至少一个纯纳什均衡 (PNE) 点的存在。此外,基于最佳响应动态 (BRD) 算法的结果,或通过替代强化学习方法(即梯度上升、对数线性和 Q 学习算法),获得并研究了不同的操作点(即卸载策略),这些方法探索和学习环境以确定用户的稳定数据卸载策略。通过建模和仿真,对这些方法的相应结果和固有特征进行了严格的比较。索引术语 — 边缘计算;博弈论;强化学习;物联网;
摘要 — 在本文中,我们介绍了一个完整的(硬件/软件)亚奈奎斯特速率(×13)宽带信号采集链,该链能够在 100 MHz – 2 的瞬时带宽内采集雷达脉冲参数。5 GHz,具有相当于 8 ENOB 数字化性能。该方法基于压缩感知(CS)的替代感知范式。硬件平台采用全集成 CS 接收器架构,称为随机调制预积分器 (RMPI),采用 Northrop Grumman 的 450 nm InP HBT 双极技术制造。软件后端由一种新颖的 CS 参数恢复算法组成,该算法无需执行全时域信号重建即可提取有关信号的信息。这种方法显著减少了检索所需信息所涉及的计算开销,这为在功率受限的实时应用中采用 CS 技术提供了一条途径。所开发的技术在由制造的 RMPI 物理测量的 CS 样本上得到验证,并给出了测量结果。详细描述了参数估计算法,并给出了物理硬件的完整描述。
数据增强现在是图像训练过程的重要组成部分,因为它可以有效地防止过度拟合并使模型对噪声数据集更加稳健。最近的混合增强策略已经取得了进展,可以生成可以丰富显着性信息的混合掩码,这是一种监督信号。然而,这些方法在优化混合掩码时会产生很大的计算负担。出于这个动机,我们提出了一种新颖的显着性感知混合方法GuidedMixup,旨在以较低的计算开销保留混合图像中的显着区域。我们开发了一种高效的配对算法,该算法致力于最小化配对图像的显着区域的冲突并在混合图像中实现丰富的显着性。此外,GuidedMixup通过平滑地插值两个配对图像来控制每个像素的混合率以更好地保留显着区域。在多个数据集上的实验表明,GuidedMixup 在分类数据集上实现了数据增强开销和泛化性能之间的良好平衡。此外,我们的方法在损坏或精简数据集的实验中也表现出良好的性能。
摘要 - 在过去的十年中,人工智能(AI)和Edge Computing(EC)的关键进步已导致Edgeai服务的发展,以提供对关键任务应用必不可少的智能和低潜伏期响应。但是,Edgeai服务对网络极端的扩展可能会面临挑战,例如负载波动,导致AI推断延迟以及对能源效率的担忧。本文提出了“模型交换”,其中Edgeai服务使用的模型将与另一个随时可用的模型交换,以便在运行时推理任务中实现成本和能源节省。ModelSwapper可以通过采用低成本算法技术来实现这一目标,该技术探讨了计算开销与模型准确性之间有意义的权衡。这样做,边缘节点通过用更简单的模型代替复杂模型来适应负载波动,从而满足所需的延迟需求,尽管不确定性较高。我们使用两种EDGEAI服务(对象检测,NLU)进行评估表明,ModelSwapper可以显着减少至少27%和68%的能量使用和推理延迟,而准确性仅降低了1%。索引术语 - 机器学习,边缘计算
抽象的DFT + U是密度功能理论(DFT)中广泛使用的处理,用于处理包含开放式元素的相关材料,因此可以在没有太多计算开销的情况下校正局部和半局部近似值的定量甚至定性故障。但是,为给定系统和结构找到适当的U参数是非平地和计算密集型的,因为U值通常具有很强的化学和结构依赖性。在这项工作中,我们通过构建机器学习(ML)模型来解决此问题,该模型几乎没有计算成本来预测材料和结构特定的U值。以MN – O系统为例,ML模型通过校准DFT + U电子结构的培训,该结构具有3000多个结构的混合功能结果。该模型允许我们确定任何给定的MN – O结构的准确U值(MAE = 0.128 eV,R 2 = 0.97)。进一步的分析表明,M – O键长是确定U值的关键局部结构特性。ML U模型的这种方法普遍适用,以显着扩展和巩固DFT + U方法的使用。
摘要 - 促进感知的目的是通过利用附近连接的自动化车辆(CAV)的补充信息来实现整体感知的结构,从而赋予了更广泛的探测范围。尽管如此,如何合理地汇总自明观察仍然是一个开放的问题。在本文中,我们提出了一种新型的车辆对车辆感知框架 - 以基于TR ANSFORMER的CO Llaboration(COTR)称为V2VFormer。特别是。根据空间感知变压器(SAT)的位置相关性,它重新估算了特征的重要性,然后与通道的变压器(CWT)执行动态语义相互作用。,COTR是一个轻巧和插件的模块,可以将其无缝调整到带有可接受的计算开销的未货架3D检测器上。此外,通过各种驾驶条件进一步增强了大规模的合作感知数据集V2V-集合,从而为模型预处理提供了广泛的知识。定性和定量实验证明了我们提出的V2Vformer在模拟和现实世界情景中实现了最新的(SOTA)协作绩效,从而超过了所有对应方面的大量余量。我们希望这将推动未来网络自主驱动研究的进步。
摘要:准确、高效的自动脑肿瘤分割算法对临床实践具有重要意义。近年来,人们对使用卷积神经网络的自动分割算法产生了浓厚的兴趣。在本文中,我们提出了一种新型的分层多尺度分割网络 (HMNet),它包含一个高分辨率分支和并行的多分辨率分支。高分辨率分支可以跟踪脑肿瘤的空间细节,而多分辨率特征交换和融合使网络的感受野能够适应不同形状和大小的脑肿瘤。具体而言,为了克服昂贵的 3D 卷积造成的大量计算开销,我们提出了一个轻量级的条件通道加权块来减少 GPU 内存并提高 HMNet 的效率。我们还提出了一个轻量级的多分辨率特征融合 (LMRF) 模块,以进一步降低模型复杂度并减少特征图的冗余。我们在 BraTS 2020 数据集上运行测试,以确定所提出的网络的效果如何。 HMNet 对 ET、WT 和 TC 的骰子相似度系数分别为 0.781、0.901 和 0.823。在 BraTS 2020 数据集和其他两个数据集上进行的大量对比实验表明,我们提出的 HMNet 与 SOTA 方法相比取得了令人满意的性能。