变分量子算法(VQA)因其错误恢复能力强和对量子资源需求高度灵活而具有优势,广泛应用于嘈杂的中尺度量子时代。由于 VQA 的性能高度依赖于参数化量子电路的结构,因此值得提出量子架构搜索(QAS)算法来自动搜索高性能电路。然而,现有的 QAS 方法非常耗时,需要电路训练来评估电路性能。本研究首创了免训练 QAS,利用两个免训练代理对量子电路进行排序,代替传统 QAS 中昂贵的电路训练。考虑到基于路径和基于表达力的代理的精度和计算开销,我们设计了一个两阶段渐进式免训练 QAS(TF-QAS)。首先,使用有向无环图 (DAG) 表示电路,并设计基于 DAG 中路径数量的零成本代理来过滤掉大量没有前途的电路。随后,使用基于表达能力的代理来精细地反映电路性能,从剩余的候选电路中识别出高性能电路。这些代理无需电路训练即可评估电路性能,与当前基于训练的 QAS 方法相比,计算成本显著降低。在三个 VQE 任务上的模拟表明,与最先进的 QAS 相比,TF-QAS 实现了采样效率的大幅提高,提高了 5 到 57 倍,同时速度也提高了 6 到 17 倍。
具有扩展Hubbard功能(DFT + U + V)的密度功能理论提供了一个可靠的框架,可以准确描述包含过渡金属或稀有元素的复杂材料。它是通过减轻半本地功能固有的自我相互作用误差来做到的,该误差在具有部分填充D和F电子状态的系统中特别明显。但是,在这种方法中实现准确性取决于现场U和现场v哈伯德参数的准确确定。在实践中,这些是通过半经验调整,需要先验知识或更正确地通过使用预测但昂贵的第一原理计算来获得的。在这里,我们提出了一种基于模棱两可的神经网络的机器学习模型,该模型使用原子占用矩阵作为描述符,直接捕获了手头系统的电子结构,局部化学环境和氧化状态。我们在这里以迭代性线性响应计算为单位计算的哈伯德参数的预测,如密度功能性扰动理论(DFPT)和结构放松。值得注意的是,当对跨越各种晶体结构和组成的12个材料的数据进行培训时,我们的模型分别达到了Hubbard U和V参数的平均相对误差,分别为3%和5%。通过规避计算昂贵的DFT或DFPT自洽协议,我们的模型可以显着加快用可忽略的计算开销的哈伯德参数的预测,同时接近DFPT的准确性。此外,由于其可靠性的可传递性,该模型通过高通量计算促进了加速的材料发现和设计,与各种技术应用相关。
本研究探索了将量子数据嵌入技术集成到经典机器学习 (ML) 算法中,旨在评估一系列模型的性能增强和计算影响。我们探索了各种经典到量子的映射方法,从基础编码、角度编码到幅度编码,对于编码经典数据,我们进行了一项广泛的实证研究,涵盖了流行的 ML 算法,包括逻辑回归、K 最近邻、支持向量机和集成方法,如随机森林、LightGBM、AdaBoost 和 CatBoost。我们的研究结果表明,量子数据嵌入有助于提高分类准确性和 F1 分数,尤其是在本质上受益于增强特征表示的模型中。我们观察到对运行时间的细微影响,低复杂度模型表现出适度的增加,而计算密集型模型则经历明显的变化。值得注意的是,集成方法在性能提升和计算开销之间表现出良好的平衡。这项研究强调了量子数据嵌入在增强传统 ML 模型方面的潜力,并强调了权衡性能改进与计算成本的重要性。未来的研究方向可能涉及改进量子编码过程以优化计算效率,并探索现实世界应用的可扩展性。我们的工作为量子计算和传统机器学习交叉领域的知识体系的不断增长做出了贡献,为寻求在实际场景中利用量子启发技术优势的研究人员和从业者提供了见解。
摘要 —公钥密码术用于以相对较高的性能成本在通信方之间非对称地建立密钥、验证或加密数据。为了减少计算开销,现代网络协议将密钥建立和验证的非对称原语与对称原语相结合。同样,混合公钥加密是一种相对较新的方案,它使用公钥密码术进行密钥派生,使用对称密钥密码术进行数据加密。在本文中,我们提出了 HPKE 的第一个抗量子实现,以解决量子计算机给非对称算法带来的问题。我们提出了仅 PQ 和 PQ 混合 HPKE 变体,并分析了它们在两种后量子密钥封装机制和各种明文大小下的性能。我们将这些变体与 RSA 和经典 HPKE 进行了比较,并表明额外的后量子开销在明文大小上摊销。我们的基于格的 KEM 的 PQ 混合变体显示 1KB 加密数据的开销为 52%,而 1MB 明文的开销降至 17%。我们报告称,基于经典、仅 PQ 和 PQ 混合 HPKE 加密 1MB 消息分别需要 1.83、1.78 和 2.15 × 10 6 个时钟周期,其中我们注意到,将量子抗性引入 HPKE 的成本相对较低。索引术语 — 后量子、混合公钥加密、后量子混合公钥加密、混合 HPKE
我们是否充分利用多模式大语模型(MLLM)中视觉编码器的潜力?MLLM最近在多模式理解中的出色表现引起了学术界和行业的广泛关注。在当前的MLLM大鼠种族中,重点似乎主要是语言方面。我们目睹了较大和更高质量的指导数据集的兴起,以及大型LLM的参与。然而,很少关注的注意力指向MLLM使用的视觉信号,通常被认为是冷冻视觉编码器提取的最终高级特征。在本文中,我们介绍了密集的连接器 - 一种简单,有效且插件的视觉语言连接器,通过利用多层视觉特征来显着增强现有MLLM,并以最少的额外计算开销。在此基础上,我们还提出了有效的密集连接器,该连接器的性能与Llava-V1.5相当,只有25%的视觉令牌。此外,我们的模型仅在图像上进行了训练,还展示了视频理解中出色的零拍功能。各种视觉编码器,图像分辨率,训练数据集量表,不同尺寸的LLM(2.7b→70b)以及MLLM的不同架构(e。g。,llava-v1.5,llava-next和mini-gemini)验证了我们方法的多功能性和可扩展性,从而在19个图像和视频基准中实现了最先进的性能。我们希望这项工作将提供宝贵的经验,并成为未来MLLM开发的基本模块。代码可在https://github.com/hjyao00/denseconnector上找到。
摘要 - 具有触发动作功能的事物(IoT)平台的信息(IoT)平台允许事件条件通过创建一系列交互来自动触发IoT设备中的操作。对手利用这种互动链将虚假事件条件注入物联网中心,从而在目标IoT设备上触发未经授权的操作以实现远程注入攻击。现有的防御机制主要集中于使用物理事件指纹对事件交易的验证,以实施安全策略以阻止不安全的事件交易。这些方法旨在提供防止注射攻击的离线防御。最新的在线防御机制提供了实时防御,但是对攻击推断对物联网网络的推断影响的可靠性限制了这些方法的概括能力。在本文中,我们提出了一个独立于平台的多代理在线防御系统,即限制,以应对运行时的远程注射攻击。限制允许国防代理在运行时介绍攻击动作,并利用强化学习来优化符合IoT网络安全要求的国防政策。实验结果表明,防御代理有效地采取了针对复杂和动态远程注射攻击的实时防御动作,并通过最小的计算开销来最大化安全增益。索引术语 - 事物的内部,触发器平台,重新注射攻击,强化学习,深度复发Q网络,多代理系统。
焊接过程产生的图像噪声(例如弧光,飞溅和烟雾)给基于激光视觉传感器的焊接机器人带来了巨大的挑战,可以定位焊接接缝并准确地进行自动焊接。当前,基于深度学习的方法超过了灵活性和鲁棒性的传统方法。但是,它们的重大计算成本导致与自动焊接的实时要求不匹配。在本文中,我们对卷积神经网络(CNN)和变压器的有效混合体系结构(称为动态挤压网络(DSNET))进行实时焊接接缝分段。更准确地说,开发了一个轻巧的分割框架,以充分利用变压器结构的优势,而无需显着增加计算开销。在这方面,旨在提高其功能多样性的高效编码器已被设计并导致了编码性能的大幅改进。此外,我们提出了一个插件轻巧的注意模块,该模块通过利用焊接接缝数据的统计信息并引入线性先验来产生更有效的注意力权重。使用NVIDIA GTX 1050TI对焊缝图像进行广泛的实验表明,与基线方法Transunet相比,我们的方法将参数的数量减少了54倍,将计算复杂性降低了34倍,并将推理速度提高33倍。dsnet可实现较高的准确性(78.01%IOU,87.64%骰子)和速度性能(100 fps),其模型复杂性和计算负担较低。该代码可在https://github.com/hackerschen/dsnet上找到。
抽象生成的AI模型(例如GPT-4和稳定的扩散)在自然语言和图像任务中表现出强大而破坏性的功能。但是,将这些模型部署在分散环境中仍然具有挑战性。与传统的集中部署不同,从系统上保证了在完全分散的环境中AI模型服务的完整性,特别是在无信任的区块链上,既重要又困难。在本文中,我们提出了一种称为质量证明(POQ)的新推论范式,以使在区块链体系结构上的任意大型生成模型中部署。与基于验证推理程序(例如ZKML或OPML)的传统方法不同,我们的POQ范式着重于模型推理的结果质量。使用基于BERT的轻质跨编码器作为我们的基本质量评估模型,我们设计和实施PQML,这是对区块链现实世界中NLP生成模型推断的第一个实用协议,该模型针对流行的开源模型量身定制,例如Llama 3和Mixtral。我们的分析表明,我们的协议对生态系统中的对抗性但理性的参与者具有牢固的态度,在这种情况下,与行为良好的参与者相比,懒惰或不诚实的行为较少。验证质量评估的计算开销很小,即使仅使用CPU,也可以在几秒钟内完成质量检查。初步仿真结果表明,POQ共识以毫秒为单位生成,比任何现有方案都快1,000倍。
量子计算应用的主要问题之一是解决实际问题所需的量子比特数量远远大于当今的量子硬件的数量。在本文中,我们引入了大系统采样近似 (LSSA) 算法,通过 N gb 量子比特基于门的量子计算机解决规模高达 N gb 2 N gb 的 Ising 问题,通过 N an 量子比特量子退火器和 N gb 量子比特基于门的量子计算机的混合计算架构解决规模高达 N an 2 N gb 的问题。通过将全系统问题划分为更小的子系统问题,LSSA 算法然后使用基于门的量子计算机或量子退火器解决子系统问题,并通过基于门的量子计算机上的变分量子特征求解器 (VQE) 优化不同子系统解与全问题哈密顿量的振幅贡献,以确定近似的基态配置。 LSSA 具有多项式时间复杂度,可以进一步扩展到更深层次的近似,计算开销随问题规模线性增长。在模拟器和真实硬件上研究了不同子系统规模、子系统数量和完整问题规模对 LSSA 性能的影响。混合门和退火量子计算架构的全新计算概念为研究大规模 Ising 问题和组合优化问题提供了广阔的可能性,使量子计算在不久的将来成为可能。
单细胞转录组学彻底改变了我们对细胞异质性的理解,但建模了超长的转录组序列(即基因的数量)仍然是一个重大的计算挑战。在这项研究中,我们基于最新的MAMBA2档案介绍了SC-MAMBA2,这是该体系结构与状态空间模型(SSMS)的首次应用,用于单细胞转录组建模。与传统的基于变压器的语言模型不同,SC-MAMBA2利用SSM的效率和可扩展性,使得通过减少的计算开销来处理更长的转录组序列。我们引入了专门针对转录组序列量身定制的独特设计适应,并在SSM框架下实现了双向建模方法,从而促进了整个基因组转录组序列的全面分析。SC-MAMBA2是单细胞转录组学结构域中最大的模型,具有超过1.5亿个参数,能够处理涵盖60,000多个基因的转录组序列。该模型在5700万个单元的数据集上进行了训练,这使其成为处理迄今为止超长序列的最全面解决方案。通过在各种下游任务中进行广泛的基准测试,SC-MAMBA2始终胜过最先进的模型,证明了卓越的准确性和计算效率。我们的结果强调了SC-MAMBA2的有效性和高级功能,将其定位为未来单细胞转录组研究的关键工具。