机器学习方法在科学过程中可能是有价值的帮助,但是他们需要面对来自非均匀实验条件的数据的具有挑战性的环境。最近,元学习方法在多任务学习方面取得了重大进展,但它们依靠黑盒神经网络,占据高计算成本和有限的解释性。利用学习问题的结构,我们认为可以使用更简单的学习模型,并具有以学习任务为例,可以使用更简单的学习模型来实现多环境的概括。至关重要的是,我们证明该体系结构可以识别系统的物理参数,从而实现可解释的学习。我们通过将其与物理系统上的最新算法进行比较,降低了我们方法的竞争性概括性能和低计算成本,从玩具模型到复杂的,非分析系统。我们的方法的解释性用原始应用在物理参数诱导的适应性和自适应控制中进行了说明。
基于EEG的BCI开发和研究面临诸多挑战,例如运动图像数据的跨受试者分类。由于EEG信号的高度个性化,开发一种在预测受试者意图时达到足够高准确率的跨受试者分类方法一直很困难。2020年,我们提出了一种多分支二维卷积神经网络(CNN),每个分支使用不同的超参数值,对不同受试者的数据更加灵活。我们的模型EEGNet Fusion在103名受试者的eegmmidb数据集上针对执行和想象的运动动作分别实现了84.1%和83.8%的准确率。与三种最先进的CNN分类器EEGNet、ShallowConvNet和DeepConvNet相比,该模型取得了统计学上显著更高的结果。然而,所提模型的计算成本比用于比较的计算成本最低的模型高出四倍。
摘要近年来,变形金刚领导了自然语言处理的一场革命,而视觉变形者(VIT)承诺在计算机视觉中也这样做。广泛使用VIT的主要障碍是它们的计算成本。的确,给定图像分为一个贴片列表,vits计算每一层,每个贴片相对于所有其他贴片的注意力。在文献中,许多解决方案试图使用量化,知识蒸馏和输入扰动来降低注意力层的计算成本。在本文中,我们的目标是在这种情况下做出贡献。特别是,我们提出了一个使用加强学习来培训代理的框架,该框架是在培训VIT期间确定最不重要的补丁的代理商。一旦确定了此类斑块,AgentVit就将其删除,从而减少了VIT处理的斑块数量。我们的目标是减少VIT的训练时间,同时保持竞争性能。
摘要近年来,变形金刚领导了自然语言处理的一场革命,而视觉变形者(VIT)承诺在计算机视觉中也这样做。广泛使用VIT的主要障碍是它们的计算成本。的确,给定图像分为一个贴片列表,vits计算每一层,每个贴片相对于所有其他贴片的注意力。在文献中,许多解决方案试图使用量化,知识蒸馏和输入扰动来降低注意力层的计算成本。在本文中,我们的目标是在这种情况下做出贡献。特别是,我们提出了一个使用加强学习来培训代理的框架,该框架是在培训VIT期间确定最不重要的补丁的代理商。一旦确定了此类斑块,AgentVit就将其删除,从而减少了VIT处理的斑块数量。我们的目标是减少VIT的训练时间,同时保持竞争性能。
摘要。由于光谱波模型计算成本高昂,风浪过程通常被排除在耦合地球系统模型之外,该模型需要解决空间和时间上波的频率和方向谱。地球系统模型中使用的现有均匀分辨率波浪建模方法无法恰当地表示从全球到沿海海洋尺度的波浪气候,这主要是因为沿海分辨率和计算成本之间的权衡。为了解决这一挑战,我们为 WAVEWATCH III (WW3) 模型引入了全球非结构化网格功能,该模型适合与美国能源部的能源百亿亿次地球系统模型 (E3SM) 耦合。新的非结构化 WW3 全球波浪建模方法可以在沿海地区提供更高的全球分辨率精度,但相对而言,均匀全球分辨率较低。这种新功能可以根据沿海应用的需要模拟物理相关尺度的波浪。
6.Griffiths,M。(2009)。在工作场所的互联网赌博,J Work Learn,21(8),658-670 7.昆士兰政府。昆士兰州家庭赌博调查报告2011 - 12。2012。8.Browne M,Greer N,Armstrong T,Doran C,Kinchin I,Langham E等。(2017)。赌博到维多利亚的社会成本。墨尔本:维多利亚州负责的赌博基金会。9.Eby,L。T.,Mitchell,M。E.,Gray,C.J.,Provolt,L.,Lorys,A.,Fortune,E。,&Goodie,A。S.(2016)。赌博 - 跨生活领域的相关问题:非治疗的探索性研究 - 寻求每周赌徒。社区,工作与家庭,19(5),604 - 620。https:// doi.org / 10.1080 / 13668803.2015.1112255 10. Victorian竞争和效率委员会2012年,计算成本:计算成本:查询问题的成本,对问题赌博的成本进行调查,最终报告,12月。
• 对于慢速信号和/或短线段,分布式 RC 模型(包括与相邻线的电容耦合)将提供足够准确的图像。 • 存在几种精确(尽管计算成本高昂)的方法来提取 R 和 C 值。 • 可以使用 RC 模型模拟延迟和耦合效应。
研发问题:• 预测线路故障、负荷削减和野火发电运行 AI 的作用:• 使用 AI/ML 进行决策支持 为什么重要:• 开发 ML 管道来替代计算成本高昂的应急分析 • 添加存储作为附加变量以增强弹性
摘要:合金和实心溶液的合理设计依赖于相图的准确计算预测。群集扩展方法已被证明是研究无序晶体的宝贵工具。但是,由于计算成本,振动熵的影响通常被忽略。在这里,我们设计了一种方法,可以通过将机器学习力场(MLFF)拟合到群集扩展结构可用的松弛轨迹中,以低计算成本在集群扩展中包括振动自由能。我们演示了两个(伪)二进制系统的方法,Na 1 -x k x cl和ag 1 -x pd x,为此,准确的声子分散剂和振动自由能来自MLFF。对于两个系统,振动效应的包含导致在实验相图中与可见性差距明显更好地吻合。这种方法可以使振动效应在计算的相图中常规包含,从而更准确地预测了材料混合物的性能和稳定性。
脑机接口系统旨在通过直接将脑信号翻译成计算机信号来促进人机交互。最近,使用多个电极使这些系统的性能更好。然而,增加记录电极的数量会导致额外的时间、硬件和计算成本,以及记录过程不必要的复杂性。通道选择已被用于降低数据维度并消除不相关的通道,同时降低噪声影响。此外,该技术降低了实时应用中的时间和计算成本。我们提出了一种通道选择方法,它将顺序搜索方法与一种称为深度 GA 适应度形成 (DGAFF) 的遗传算法相结合。所提出的方法加速了遗传算法的收敛并提高了系统的性能。系统评估基于一个轻量级深度神经网络,该网络可自动化整个模型训练过程。所提出的方法在对所利用的数据集上的运动意象进行分类方面优于其他通道选择方法。