摘要:高性能计算(HPC)的局限性严重制约着数值模型的发展。传统数值模型通常采用双精度来保证结果的准确性,但这种做法计算成本较高。虽然使用较低的精度可以大幅降低计算成本,但可能会引入舍入误差,这在特定条件下会影响精度。准双精度算法(QDP 算法)通过保留修正值来补偿这些舍入误差,从而提高结果精度。为了探究该算法对提高数值模型结果精度的有效性,本文将其应用于单精度版本的跨尺度预测模型——大气(MPAS-A),并在两个理想情况和两个真实数据案例中评估其性能。结果表明,应用QDP算法在三种情况下可使表面压力偏差分别降低68%、75%、97%和96%。与双精度试验相比,运行时间分别减少了28.6%、28.5%、21.1%和5.7%。本研究表明,QDP算法为数值模型提供了有效且经济的计算能力。
数据生成的迅速增加,结合了大型数据集的不切实际性以及机器学习任务的日益增长的复杂性,促进了分布式学习技术的发展。在其中,联邦学习(FL)由于其隐私保护方法而受到了极大的关注,在这种方法中,多个客户在不共享本地数据的情况下协作训练全球模型。但是,FL面临着几个关键的挑战,包括数据异质性,高计算成本和效率低下。这些问题在客户数据分布是非IID,计算资源有限的现实情况下变得更加明显,并且可以限制通信。本论文通过开发用于个性化联合学习(PFL)的有效算法和受到限制的联邦学习来解决这些挑战。所提出的方法旨在处理异质数据,最大程度地减少计算开销并降低沟通成本,同时保持强大的理论保证。具体而言,论文介绍了三个关键贡献:(1)PFL MF,一种基于低级矩阵优化的新型PFL公式,利用burer-Monteiro分解以实现个性化,而无需依赖预定义的距离指标。(2)PERMFL,一种用于多层PFL的算法,该算法介绍了针对团队和单个设备的个性化决策变量,从而在具有分层客户端结构的情况下有效地优化了。(3)FedFW,一种用于约束FL的无预测算法,该算法强调了通过稀疏信号交换的低计算成本,隐私保存和通信效率。通过解决FL中的关键问题,例如数据异质性,计算成本和通信瓶颈,拟议的算法推进了联合学习的领域,为实地世界应用提供了可靠的可扩展解决方案。
由于Feynman [1]和Lloyd [2]的第一个开创性作品,量子计算被认为是探索与经典计算工具相关的强大相关多体系统的量子动力学的可能途径。哈密顿模拟算法的最新进展[3-6]允许对像计算不平衡外的dynamics [7]一样多样化的计算成本,独特的散射跨点[8,9]和基态能量估计[10]。大多数提出的算法仍然需要许多门太大,无法在NISQ设备上进行应用[11],并且需要更多的工作才能降低这些成本(例如,请参阅Eg。[9]最近分析了中微子核散射的要求)。在Somma [12]的最新工作中,我们在这项工作中提出了一种新的量子算法,具有几乎最佳的计算成本(就甲骨文调用而言),以研究光谱密度估计问题。尤其是给定栖息地操作员ˆ O,这项工作的目的是获得有效的算法,以近似频谱密度操作员ˆρ(ω)=δ(ω -− ˆ o),并使用DIRAC DIRAC DELTA函数。使用操作员的特征态ˆ o我们具有以下频谱表示
1. 使用快速反投影算法获得最佳图像形成效果。2. 实时 (RT) 处理能力可显著缩短向客户交付图像/数据的时间。3. 显著降低总计算成本。4. 必要时提供机载处理能力,例如在载人情报任务飞机、无人机等上。
金属增材制造的计算过程建模在最近引起了广泛的研究关注。许多过程模型的基础是 AM 过程中的瞬态热响应。由于 AM 中热条件的沉积尺度建模计算成本高昂,因此文献中通常采用空间和时间简化,例如模拟整个层或多个层的沉积,以及延长激光曝光时间。虽然这些简化有利于降低计算成本,但本文逐一报告了这些简化对温度历史准确性的影响。在本文中,首先根据空间和时间域中的假设,将现有文献中的简化分类到归一化简化空间中。随后,使用数值示例研究所有类型的简化,并与高保真参考模型进行比较。建立了每个简化所需的数值离散化,从而可以公平地比较计算时间。对不同建模简化方法是否适合捕捉热历史进行了整体分析,为建立热 AM 模型时简化方法的适用性提供了指导。关键词:增材制造、热建模、简化、激光粉末床熔合
机器学习(ML)和科学计算的交集为增强物理,工程和应用科学中使用的计算模型提供了变革的机会。传统的数值方法虽然建立了良好,但通常会受到限制其适用性的过度计算成本和时间的限制。此外,常规方法通常仅利用可用数据的一小部分,而数据在模型构建中很少起着核心作用。科学机器学习的最新进展(SCIML),尤其是在功能空间之间的学习操作员方面,提供了有希望的范式转移。然而,仍然存在关键挑战,包括执行身体限制,严格量化预测性不确定性以及确保认证的准确性。这项研究旨在开发桥接数值分析和ML的新方法,开发可靠的模型,这些模型将物理与数据无缝整合,同时保留理论声音。此外,它将探索与传统求解器相比,迅速近似差异问题解决方案的新方法,大大降低了计算成本和环境影响。这样做,我们试图提高科学计算中ML驱动技术的可靠性,可解释性,适用性和可持续性。
Aurora 是微软的天气预测 AI 基础模型,能够以更快的速度和比传统数值天气预测系统更低的计算成本做出准确的操作预报。此类模型的一个好处是,在数据稀缺的地区表现良好,使低收入国家能够民主化地获取准确的天气和气候信息,从而支持气候适应工作。
在基于量子的计算方法领域,密度泛函理论 (DFT) 尤其引人注目,因为它能够以相对较低的计算成本为广泛的系统产生准确的结果。8 因此,每年都有大量的计算研究利用 DFT 计算。例如,美国国家能源研究科学计算中心 (NERSC) 报告称,2018 年其超级计算机资源的近 30% 仅用于 DFT 计算。9 广泛的研究和开发工作不断致力于优化 DFT 计算的性能和准确性,从而产生了大量开源和商业 DFT 软件包。10 一些软件包可以利用专用硬件(例如通用图形处理单元 (GPU))来承担大部分工作负载。 11 − 17 然而,在传统的 DFT 实现中,即没有对密度矩阵或哈密顿矩阵进行特定的稀疏性假设,计算成本与描述系统所用轨道数量 N 的三次方成比例(在本文中称为 O(N3) DFT),并且这种立方缩放通常使模拟大型系统(如蛋白质−配体复合物或金属−有机框架)18 的成本变得非常昂贵。
摘要:大型强关联系统的量子化学计算通常受到计算成本的限制,而计算成本会随系统规模呈指数级增长。专为量子计算机设计的量子算法可以缓解这一问题,但所需的资源对于当今的量子设备来说仍然太大。在这里,我们提出了一种量子算法,该算法将化学系统的多参考波函数的局部化与量子相位估计 (QPE) 和变分酉耦合簇单重和双重 (UCCSD) 相结合,以计算其基态能量。我们的算法称为“局部活性空间酉耦合簇”(LAS-UCC),对于某些几何形状,该算法与系统规模呈线性关系,与 QPE 相比,总门数减少了多项式,同时提供的精度高于使用 UCCSD 假设的变分量子特征求解器,也高于经典的局部活性空间自洽场。 LAS-UCC 的准确性通过将 (H 2 ) 2 分解为两个 H 2 分子以及通过破坏反式丁二烯中的两个双键来证明,并且提供了最多 20 个 H 2 分子的线性链的资源量估计。■ 简介
定量的风险管理实践带有强大的计算挑战和高运营成本。复杂投资组件的风险管理要求部署计算上的数值方案,例如Monte Carlo(MC)模拟或部分微分方程(PDE)求解器。此外,计算风险的标准方法需要在数百个市场情况下重复投资组合的损益(P&L)计算,以形成所需敏感性的有限差异估计器。在许多情况下,即使在部署了大量的计算机电源之后,这些计算也不能在实际的时间内完成(An-reareasen,2023)。由于生命风险管理的总成本可以确定是否可以执行新贸易,因此解决此技术问题对于允许证券公司在市场上保持竞争力至关重要。在文献中提出了几种用于计算价格敏感性的替代方法,尤其是在MC模拟的背景下(有关评论,例如参见,例如,Glasserman,2004年)。在其中,路径衍生方法(Broadie和Glasserman,1996)以计算成本进行了无偏估计,该计算成本在某些特定应用中小于standard有限差异方法之一。然而,在实践中遇到的问题的主要问题中,标准的路径衍生方法提供了有限的计算收益。PATHWIESS的更有效实现