摘要 - 在有镜的物理学的背景下开发的调整网络试图近似阶列量 - 自由度降低,而自由度降低,仅在n中仅是多项式的,并作为部分合成的较小张量的网络排列。正如我们最近在量子多体物理学的背景下所证明的那样,通过对此类网络中张量的规范多核(CP)等级对张力的构成施加约束,可以进一步降低计算成本[ARXIV:2205.15296]。在这里,我们演示了如何在机器学习中使用具有CP等级约束和张量液位的树张量网络(TTN)。该方法在时尚 - mnist图像分类中的表现优于其他基于张量的基于网络的方法。分支比b = 4的低级TTN分类器达到90.3%的测试集精度,计算成本低。主要由线性元素组成,张量网络分类器避免了深度神经网络的消失梯度问题。CP等级约束具有额外的优点:可以更自由地减少参数的数量,以控制过度拟合,改善概括属性并降低计算成本。他们允许我们使用具有较高分支比率的树木,从而大大提高了表示能力。
Vision Transformer(VIT)在计算机视觉领域取得了重大步骤。然而,随着模型的深度和输入图像的重新分配增加,与培训和运行的VIT模型相关的计算成本急剧上升。本文提出了一个基于CNN和Vision Trans-trans-trans的混合模型,称为CI2P-VIT。该模型包含一个称为CI2P的模块,该模块利用Compressai编码来压缩图像,然后通过一系列连接生成一系列贴片。CI2P可以替换VIT模型中的贴片嵌入组件,从而无缝集成到现有的VIT模型中。与VIT-B/16相比,CI2P-VIT具有减少到原始四分之一的自我发项层的斑块输入数量。此设计不仅显着降低了VIT模型的计算成本,而且还通过引入CNN的电感偏置特性有效地提高了模型的准确性。VIT模型的精度显着提高。在Animal-10数据集的地面上接受训练时,CI2P-VIT的准确率为92.37%,比VIT-B/16基线提高了3.3%。此外,该模型的计算操作以每秒浮点操作(FLOPS)测量,减少了63.35%,并且在相同的硬件配置上的训练速度增加了2倍。
建筑部门在所有部门的运营能源消耗和温室气体排放中的份额最高。许多国家设定的环境目标迫使需要改善现有建筑股票的环境足迹。建筑改造被认为是该方向的最有希望的解决方案之一。在本文中,提出了用于评估必要的建筑包络和能源系统改造的替代模型。人工神经网络被利用以建立此模型,以在准确性和计算成本之间取得良好的平衡。对所提出的模型进行了培训和测试,用于瑞士苏黎世市的案例研究,并将其与使用构建模拟和优化工具的建筑改造最先进的模型之一进行了比较。替代模型在较小的输入集上运行,而推导改造溶液所需的时间从3.5分钟减少到16.4μsec。结果表明,所提出的模型可以显着降低计算成本,而无需大多数改造维度的误差准确性。例如,改装成本和能源系统SE部门的平均精度为r 2 = 0。9408和F 1得分= 0。9450。最后,重要的是,这种替代改造模型可以有效地用于宽面积的自下而上的改造分析,并有助于加速采用改造措施。
虽然大型语言模型(LLM)在自然语言处理中表现出了显着的功能,但它们在涉及知识图(kgs)的复杂,多步推理任务方面挣扎。现有的方法可以使LLM和KGS降低LLM的推理能力或由于紧张的态度而遭受非义务计算成本的能力。为了解决这些局限性,我们提出了一个名为Effiqa的新型协作框架,可以通过迭代范式在绩效和效率之间取得平衡。ef- fiqa包括三个阶段:全球计划,有效的KG探索和自我反思。具体来说,Effiqa利用LLMS通过全球计划探索潜在的推理途径的常识能力。然后,它将语义修剪卸载到一个小型插件模型中,以进行有效的kg探索。fi-Nely,探索结果被馈送到LLMS进行自我反思,以进一步改善全球计划和有效的KG探索。对多个KBQA基准测试的经验证据表明了Effiqa的有效性,在推理准确性和计算成本之间取得了平衡。我们希望提出的新框架将通过集成LLM和KGS来实现高效,知识密集的查询,从而促进对基于知识的问题答案的未来研究。
2017 年 7 月 - 2022 年 3 月 • 印度理工学院 (IIT) 德里分校电气工程系博士学位,CGPA 为 8.85/10。 • 获得享有盛誉的总理研究奖学金 (PMRF),该奖学金颁发给该国追求其研究的优秀博士生。 • 我的论文“基于空间和解剖谐波领域的脑源定位”围绕两个极点构建:基础研究极点和应用研究极点。 • 基础研究极点 (FRP):我致力于开发新型低计算成本脑源定位算法,使用非侵入性 EEG 信号来定位神经系统疾病癫痫发作的位置。我利用高级信号处理知识将正向和逆数据模型转换为球面和头部谐波域,以实现低计算成本和高定位精度。 • 应用研究极点 (ARP):FRP 增强的空间和时间信息用于揭示神经肌肉障碍和人类运动学习能力的机制,以促进和支持人机之间的通信。对于系统开发,传统的基于分类的 BCI 通过向执行器提供离散控制信号来控制外部设备。开发了新颖的深度学习模型,用于从 EEG 信号中连续解码手部运动参数,以供实际 BCI 应用使用。
摘要 — 脑机接口可用于通过从大脑活动中检测人的意图来操作设备。从脑电图 (EEG) 信号解码运动想象 (MI) 是实现此目的的常用方法。为了从 EEG 信号中可靠地识别 MI,通常需要足够数量的传感器。然而,大量的传感器会增加区分 MI 类别的计算成本。此外,与医疗或研究级设备相比,测量 EEG 信号的消费级设备通常采用较少数量的传感器。在这项实验研究中,我们研究了从有限数量的 EEG 传感器解码 MI 时准确性和复杂性之间的权衡。为此,使用成熟的解码方法,使用不同子集的电极位置对 EEG 数据训练了几个解码管道。我们发现,使用较少的传感器时,平均解码准确度没有显著差异 (p=[0.18–0.91])。单个人的最大性能损失是当使用 64 个可用传感器中的 8 个时,平均解码准确度降低了 0.1。因此,从有限数量的传感器解码 MI 是可行的,这凸显了为此目的使用商业传感器设备以降低金钱和计算成本的潜力。
1-3菲律宾大学Diliman,计算机科学系摘要:本文比较了各种机器学习模型,以预测财务趋势的能力,重点是时间序列分析。 我们评估了诸如线性回归,决策树,支持向量机和深度学习之类的模型,并根据准确性,计算成本和解释性来衡量其性能。 我们的结果表明,深度学习模型提供了卓越的准确性,但较不容易解释,而简单的模型虽然不准确,但可以更好地了解基础数据。 本研究提供了基于特定财务应用程序选择合适模型的准则。 关键字:机器学习,预测分析,时间序列分析,财务建模,比较分析。 A. 简介1-3菲律宾大学Diliman,计算机科学系摘要:本文比较了各种机器学习模型,以预测财务趋势的能力,重点是时间序列分析。我们评估了诸如线性回归,决策树,支持向量机和深度学习之类的模型,并根据准确性,计算成本和解释性来衡量其性能。我们的结果表明,深度学习模型提供了卓越的准确性,但较不容易解释,而简单的模型虽然不准确,但可以更好地了解基础数据。本研究提供了基于特定财务应用程序选择合适模型的准则。关键字:机器学习,预测分析,时间序列分析,财务建模,比较分析。A.简介
接触追踪已成为一种强大而有效的措施,以遏制传染性疾病的传播。这是一个强大的工具,但由于接触跟踪需要收集大量个人信息,因此不利的一面是侵犯隐私的风险。因此,需要一个加密原始的原始词,以使用户的个人数据混淆。考虑到所有内容,私人集交叉路口似乎是解决问题的自然选择。几乎所有现有的PSI协议都依赖于基于理论假设的硬性问题。但是,这些问题在量子域中并不安全。因此,对于设计可以抵抗量子攻击并提供长期安全性的PSI至关重要。一个人可以应用量子密码学来开发这种PSI协议。本文使用量子密码学(QC)介绍了PSI的设计,其中安全性取决于基本量子力学的原理。我们的计划实现了长期的安全性,并且由于使用QC而保持量子攻击。与现有的量子PSI协议相反,我们计划的通信和计算成本独立于通用集合的大小。特别是,提出的协议在量子PSI领域实现了最佳的通信和计算成本。此外,与大多数现有的量子PSI协议不同,我们仅需要单个光子量子资源和简单的单粒子投影测量值。
设计,优化和制造。数值技术,例如有限元分析,验收动力学,第一原理计算和多尺度建模,可以有效地预测机构属性并优化设计。与此同时,人工智能和大数据分析可以通过机器学习发现新材料和反向设计。智能手段与自适应控制系统相结合,实现了生产过程的自动化和实时优化,从而提高了制造效率和精度。尽管数据和计算成本不足,但随着技术的进步,材料科学却朝着更高的精度和自动化方向发展。
摘要 — 脑机接口可用于通过从大脑活动中检测人的意图来操作设备。从脑电图 (EEG) 信号解码运动想象 (MI) 是实现此目的的常用方法。为了从 EEG 信号中可靠地识别 MI,通常需要足够数量的传感器。然而,大量的传感器会增加区分 MI 类别的计算成本。此外,与医疗或研究级设备相比,测量 EEG 信号的消费级设备通常采用较少数量的传感器。在这项实验研究中,我们研究了从有限数量的 EEG 传感器解码 MI 时准确性和复杂性之间的权衡。为此,使用成熟的解码方法,使用不同子集的电极位置对 EEG 数据训练了几个解码管道。我们发现,使用较少的传感器时,平均解码准确度没有显著差异 (p=[0.18–0.91])。单个人的最大性能损失是当使用 64 个可用传感器中的 8 个时,平均解码准确度降低了 0.1。因此,从有限数量的传感器解码 MI 是可行的,这凸显了为此目的使用商业传感器设备以降低金钱和计算成本的潜力。