摘要 — 癫痫是一种神经系统疾病,其特征是由大脑异常电活动引起的突发和反复发作。反应性神经刺激 (RNS) 为药物难治性癫痫患者提供了一种有希望的治疗选择。反应性神经刺激 (RNS) 是一种采用闭环系统的植入式设备。它通过皮层脑电图 (ECoG) 记录持续监测大脑活动。当系统检测到癫痫发作活动时,它会向大脑发送直接电刺激以抑制癫痫发作。癫痫发作检测算法需要针对患者进行优化,这导致近年来人们对深度学习方法的兴趣日益浓厚。虽然更深的网络架构通常可以提高检测准确性,但它们在植入式设备中的实现受到硬件资源有限和可用于 ECoG 监测的电极通道数量有限的限制。为了确保 RNS 的实际可行性,系统地最小化患者特定深度学习模型的计算成本和连接的 ECoG 电极数量至关重要。本研究通过分析在 3D ECoG 数据上训练的 3D 卷积神经网络 (3D CNN) 的第一个卷积层学习到的时空核,系统地减少了癫痫检测模型中的电极通道数量和计算成本。这种方法充分利用了网络学习网格电极之间的空间关系和 ECoG 信号的时间动态的能力。缩小后的癫痫检测 CNN 模型与原始 CNN 模型之间的性能比较表明,至少对于某些患者,可以在减小模型尺寸的同时保持推理性能。
尽管第一个原理电子结构计算方法具有很高的预测能力,并且已用于阐明各种反应过程,但由于高计算成本,空间尺度限制为NM,而时间范围则限制为大约几十ps。最近,通过将DFT与机器学习方法相结合来克服这一限制。使用多尺度模拟,我们已经能够在以前不可能的表面和面上实现大型的空间尺度和长时间尺度模拟。我们旨在通过多尺度模拟阐明异质催化反应过程,并确定控制催化剂的因素,并提供设计更多有效催化剂的指南。
物联网(IoT)设备的爆炸爆炸创造了大量的实时数据,需要复杂的数据挖掘方法(DMT),这些方法可以快速提取有价值的见解。管理处理高数据量的计算复杂性,整合各种物联网数据格式,并确保系统可以扩展是最重要的问题之一。模糊动态自适应分类器优化分析(FDACOA)是一种方法,已被建议作为一种方法,以解决数据模式变化,实时处理和数据异质性引起的困难。通过合并自适应模糊逻辑(AFL)和启发式优化,FDACOA提高了数据分类的精度和效率,同时确保该算法可以适应数据流的变化。这种适应性在物联网应用中至关重要,在物联网应用中,数据波动可能会影响分析质量。FDACOA使用动态适应来根据实时反馈改变分类器参数,以提高预测准确性并降低计算成本。优化层微型模糊规则和成员资格功能,以优化跨数据情况的性能。仿真分析证明了该算法以高准确性和低计算成本进行分类的能力。智能医疗保健,工业物联网中的预测维护和智能运输系统使用FDACOA进行实时决策和数据驱动的见解。FDACOA是一种可行的方法,用于在IOT支持的大数据上下文中进行动态数据挖掘,因为它的速度更快,更准确且更适应性地适应性模拟结果。关键字:模糊启发式算法,动态数据挖掘,物联网,集成的大数据环境,分类优化。
脑肿瘤是大脑中异常细胞的质量或簇,由于其能够侵入邻近组织并形成转移酶的能力,因此可能会威胁生命。准确的诊断对于成功的治疗计划和磁共振成像是必不可少的,这是诊断脑肿瘤及其程度的主要成像方式。近年来,计算机视觉应用程序中的深度学习方法已显示出显着的改进,其中大多数可以将大量数据可用于培训模型,并且模型体系结构的改进在有监督的环境中产生更好的近似值。使用这种深度学习方法对肿瘤进行分类,这使得带有可靠注释的开放数据集的可用性取得了重大进展。通常这些方法是3D模型,它使用3D体积MRI,甚至是2D模型,即分别考虑每个切片。然而,通过分别处理一个空间维度,或通过将切片作为一系列图像随着时间的推移来处理,时空模型可以用作此任务的“空间空间”模型。这些模型具有学习特定的空间和时间关系的功能,同时降低了计算成本。本文使用两个时空模型,即Resnet(2+1)D和Resnet混合卷积,以对不同类型的脑肿瘤进行分类。观察到,这两个模型的性能都优于纯3D卷积模型RESNET18。此外,还观察到,在训练肿瘤分类任务之前,将模型预先培训在不同的,甚至是无关的数据集上可以提高性能。最后,在这些实验中,预先训练的重新结合卷积是最佳模型,达到了0.9345的宏F1评分,测试准确性为96.98%,而同时是计算成本最少的模型。
2005 年报道了一种基于量子相位估计 (QPE) 的算法,可在多项式时间内解决全配置相互作用 (full-CI),该算法可以在所使用的基组内给出变分最佳波函数,但在经典计算机上求解的计算成本随着系统规模的增加而呈指数增加。3 2014 年提出了一种可在嘈杂的中等规模量子 (NISQ) 设备 4 上执行的量子 - 经典混合算法,称为变分量子特征求解器 (VQE)。5,6 此后,出现了许多关于通过改进量子算法 7 – 21 来降低计算成本并提高速度的报道,并且已经记录了使用各种量子设备 22 – 30 的相关实验演示。尽管量子计算机上的量子化学计算理论 (QCC-on-QCs) 取得了快速进展,但有效处理开壳层电子结构的方法仍处于起步阶段。开壳层系统在化学中无处不在。例如,有机双自由基可用作分子自旋量子计算机的原型 31,32、动态核极化 (DNP) 中的极化剂 32,33、有机发光材料 34,35 等等。开壳层多核过渡金属配合物经常作为反应中心参与酶的合成。36,37 单分子磁体作为分子存储装置已被广泛研究。38 为了揭示它们的电子结构,复杂的从头算量子化学计算是强大而必要的工具。然而,在携带自旋-b 不成对电子的开壳层系统中,波
神经普通微分方程(神经odes)是一个深层神经网络的新家族。本质上,神经极是一个微分方程,其向量场是神经网络。将神经颂作为机器学习模型的一部分,使该模型比标准模型更有效。的确,可以使用伴随灵敏度方法来训练模型的神经ode块,该方法计算梯度下降方法的梯度,以避免经典的反向传播的计算成本。我们对这一领域的贡献是对神经ode块的稳定性和合同性的研究,是一个微分方程,目的是设计训练策略,以使整体机器学习模型稳健且稳定,以抗对抗攻击。此海报基于[1],[2]和[3]。
科学机器学习(SCIML)通过简化计算建模并提供具有成本效益的替代模型,从而显着增强了传统的数值方法。尽管有这些优势,但SCIML代理的训练阶段仍然在计算上仍然昂贵,从而限制了它们在现实世界,多尺度和多物理学,工程问题中的适用性。这个博士学位项目旨在通过为利用多级技术和/或域分解方法开发新颖的培训算法来解决这一局限性。重点将放在设计创新的优化器,调查各种网络分解以及实施有效的并行化策略以提高可扩展性和降低计算成本。
可退还的保费税收抵免……………………………………………………………………………………………………………… ‐6 CBO 为 2024 财年持续拨款法案(公法 118-15)第 101(6) 节(经修订)计算出 2024 年的成本为 600 万美元,该法案延长至 3 月 22 日公法 117-328 第 O 部分第三标题。第 O 部分第 303 节规定了 H-2B 补充签证豁免,这在某些情况下增加了 H-2B 签证的数量。该成本考虑了这些签证接收者根据本节可能有资格获得的福利。由于公法 117-328 第 303 节与联邦福利之间没有法定联系,OMB 将这些影响视为间接影响,并且不为该条款计算成本。
首先,我们学习一层特征检测器,其活动使我们能够重建输入。然后,我们学习第二层特征检测器,其活动使我们能够重建第一层特征检测器的活动。以这种方式学习几个隐藏层之后,我们尝试根据最后一层隐藏层中的活动预测标签,并通过所有层反向传播误差,以便微调最初发现的特征检测器,而无需使用标签中的宝贵信息。预训练可能会提取与最终分类无关的各种结构,但在计算成本低廉且标记数据昂贵的情况下,只要预训练将输入转换为使分类更容易的表示,这就可以了。