深度学习和神经网络:多层感知器:多层感知器体系结构,什么是隐藏的层?每一层中有多少层和多少个节点?激活函数:线性传输函数,重型阶跃功能(二进制分类器),sigmoid/logistic函数,软马克斯函数,双曲线切线函数(TANH),整流的线性单元,泄漏的relu。前馈过程:前馈计算,特征学习。错误函数:错误函数是什么?,为什么我们需要一个错误函数?错误总是正面的,均为正方形错误。跨凝性,关于错误和权重优化算法的最终说明:什么是优化?,批处理梯度下降,随机梯度下降,微型批次梯度下降,梯度下降点击。反向传播:什么是反向传播?,反向传播外卖。
●计算机视觉和机器学习应用在Heliophysics中的应用,包括:太阳能磁性太阳能活动(耀斑,CMES,颗粒)太阳能风太空空间天气和空间气候气候地机无线电循环无线电射击
ethz.ch › edu › slides › Info2-ITET-11 PDF 2023年3月29日 — 2023年3月29日 了解飞机的可靠性有时并不比计算机高!... 政府在当时所谓的“人体工程学”或... 方面存在问题
人类的视野比在分布外情景下表现出的鲁棒性更高。它已经通过逐个合成的分析来猜想这种鲁棒性益处。我们的论文通过通过渲染和能力算法在神经特征上进行近似分析,以一致的方式制定三重视觉任务。在这项工作中,我们引入了神经丝线可变形的网格(NTDM),该网格涉及具有变形几何形状的OBJECT模型,该模型允许对摄像机参数和对象几何形状进行优化。可变形的网格被参数化为神经场,并被全表面神经纹理图所覆盖,该图被训练以具有空间歧视性。在推断过程中,我们使用可区分渲染来最大程度地重建目标特征映射,从而提取测试图像的特征图,然后对模型的3D姿势和形状参数进行优化。我们表明,在现实世界图像,甚至在挑战分布外情景(例如闭塞和主要转变)上进行评估时,我们的分析比传统的神经网络更强大。在经常性能测试测试时,我们的算法与标准算法具有竞争力。
摘要。研究相关性是由在难以到达条件下改善对象大小的测量过程的需要决定的。在现代工业环境中,高测量精度对于确保安全和最大化生产过程的效率至关重要,对该主题的研究在快速技术发展和提高生产质量要求的背景下是相关的。该研究旨在评估使用现代计算机视觉方法在困难的技术条件下测量和重建对象的可能性,例如水 - 水功率反应堆的封闭。该研究采用了3D摄影测量方法,包括立体声和多视图立体声的深度,以及运动方法的结构。研究确定,现代计算机视觉方法,特别是机器学习方法,可以成功地用于在难以到达的条件下测量和重建对象。研究表明,在理想条件下,从测量设备到对象的测量精度可以达到接近1 mm的值。同时,与立体声方法的深度相比,多视图立体法揭示了误差的空间分布更大的均匀性。在实践中,在真实照片的条件下,多视图立体声方法最需要准确地确定相机的位置。由于其对摄像机确切坐标的需求较低,立体声方法的深度显示出更好的结果,显示出较小的测量误差。这项研究强调了使用所提出的方法区分
图像增强(点处理):图像负片、阈值处理、有背景和无背景的灰度切片、幂律和对数变换、对比度拉伸、直方图均衡化和直方图规范空间域图像增强(邻域处理):用于图像增强的低通和高通滤波、空间滤波基础、生成空间滤波器掩模 - 平滑和锐化空间滤波图像变换:一维 DFT、二维离散傅里叶变换及其逆变换、二维 DFT 的一些属性、沃尔什-哈达玛、离散余弦变换、哈尔变换、倾斜变换频域图像增强:频域滤波基础、平滑和锐化频域滤波器
为口腔 - 芯片模型创建基本结构涉及设计一个微流体芯片,该微流体芯片复制必需的组件并创建模拟口腔复杂性的微环境。微流体芯片可以由各种材料制成,包括玻璃,硅和聚合物。微流体芯片的标准制造技术包括软光刻,光刻图和注射成型。这些方法可以在芯片上创建复杂的微观结构和通道。微流体芯片应复制口腔的关键成分,包括代表各种口腔组织的细胞培养室,例如上皮细胞,成纤维细胞和唾液腺细胞,这些细胞包含在细胞外基质中。细胞外基质可以结合水凝胶或其他材料,以提供结构支撑和细胞附着和生长的基板。结合灌注系统可模拟血液,使营养素,氧气和药物的递送2,3。
本研究研究了基于自由结合能(δg)的潜在活性预测以及对ARTOCARPUS冠军(Lour。)的植物复合的相互作用确认。使用二肽基肽酶IV(DPP -IV)的大分子蛋白受体在硅分子对接研究中,以及物理化学和药代动力学特性(ADME -TOX)预测方法。使用Autodock v4.2.6(100个对接运行)将DPP -IV受体大分子蛋白蛋白数据库(ID:1×70)的活性子站点停靠。一个52×28×26Å点的网格盒子由0.37Å的距离为X =40.926Å的活动位置; y =50.522Å; Z =35.031Å。用于ADME -TOX预测,使用了基于瑞士的在线申请计划。结果表明,基于δg值和相互作用构象,来自A.冠军的12个Pythocompound具有DPP -IV抑制剂的潜力。比天然配体有五个具有较低δg值和抑制常数的Pythocompounds,七个具有δg值和抑制常数接近天然配体的Pythocompounds。12种化合物在DPP -IV受体的活性子矿石上形成了一种相互作用构象。同时,Adme -Tox预测分析的结果表明,这12种化合物具有不同的物理化学和药代动力学特性。