在物联网人工智能快速发展的背景下,物联网的建立可以促进人工智能领域的快速进步。传统图像检测方法采用小波能量算法划分背景和边缘噪声,分辨率较差,图像检测精度低,存在检测速度慢、缺乏图像深度分析等一系列问题。针对传统方法的弊端,本研究提出基于物联网的人工智能图像检测系统的设计,采用智能人工像素特征采集技术对图像进行逐点特征提取。将人工智能学习算法引入到物联网系统下的车间车轮检测中,不仅可以解决传统方法中特征抗干扰性差、鲁棒性差的问题,而且对车轮检测系统的二次开发具有重要意义。利用神经网络对车轮图像进行分类,同时融合车轮缺陷检测、车轮编号识别等其他检测需求,利用物联网丰富的数据资源和处理能力对采集的图像像素进行特征分析和反馈。人工智能图像合成模块对信号进行图像转换处理,处理反馈信号,分析结果完成图像检测,完成人工智能图像。通过仿真实验,证明了基于物联网的人工智能图像检测系统设计具有图像检测率高、识别准确率高、运行稳定、处理高效等优点,该设计思路具有很好的应用价值。
本研究旨在通过测量不同狗品种中心脏的椎心脏尺度和心脏的解剖结构来揭示统计差异。椎心尺度(VHS)最近被描述为一种测量狗和猫的心脏轮廓的方法。椎骨心脏尺度(VHS)可能因年龄,体重等而因狗和猫而异。使用了不同年龄和体重的21只狗(10只男性和11个女性)。在使用的狗品种中,包括法国斗牛犬,俄罗斯贵宾犬,罗威纳犬,杰克·罗素,金毛猎人,金查尔斯,北京,比利时牧羊犬,赫斯基,奇瓦瓦,奇瓦瓦,卡克,terrier,terrier,斗牛犬,斗牛犬,bouvier,bouvier和弗兰德斯繁殖。在80 kV,200 Ma,639 MGY和0.625 mm切片厚度下扫描多层检测器。所得图像保存在数字成像和医学(DICOM)格式中。在3D-Slicer软件中测量获得的部分。胸高度(Th)和颅静脉腔(CVC)测量参数具有统计学意义,重量(p <0.05)。椎骨心脏尺度(VHS)在相关分析中具有任何参数(p> 0.05),在统计上没有统计学意义。在动物重量的相关表与测量值的相关表中,可以看到它与除椎骨心脏分数(VHS)以外的其他测量参数具有非常显着的正相关性(p <0.01)。椎骨尺度确定为女性的9.09±1.37椎骨,男性为9.50±0.52椎骨。该研究旨在为兽医解剖学,手术和内科医学做出贡献。