请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。 本文件由全国量子计算与测量标准化技术委员会(SAC/TC587)提出并归口。 本文件起草单位:中国科学技术大学、济南量子技术研究院、中国科学院计算技术研究所、中国人 民解放军国防科技大学、中国标准化研究院、中国信息通信研究院、中国电子技术标准化研究院、深圳 市腾讯计算机系统有限公司、中国计量大学、武汉大学、华为技术有限公司、杭州知量科技有限公司、 上海图灵智算量子科技有限公司、阿里巴巴网络技术有限公司、深圳量旋科技有限公司等。
首先检查了从关键字搜索确定的设计方法,以将重复的方法组合在一起。这包括将基本相同但以不同命名的方法分组在一起。例如,卡排序有时被称为卡片排序。由于它们本质上是相同的方法 - 涉及将卡片分类以获取目标用户的信息 - 他们将其分组在一起。接下来,他们被过滤以建立至少两个来源中识别的方法列表。在某些情况下,即使在至少两个来源中识别出该方法,也没有考虑一种方法。仅提供了两种来自设计委员会(N.D.A)和设计委员会(N.D.B)的来源的方法,因为在两个网站中提供的描述都非常相似,因此也省略了。因此,省略的方法是:选择样本,集群和投票,比较笔记,驱动因素和障碍,希望和恐惧,项目空间,涂鸦 - say say slap头脑风暴和讲习班工具包。
物理信息神经网络 (PINN) 已成为解决科学计算问题的强大工具,从偏微分方程的求解到数据同化任务。使用 PINN 的优势之一是利用依赖于 CPU 和协处理器(如加速器)组合使用的机器学习计算框架来实现最大性能。这项工作使用量子处理单元 (QPU) 协处理器研究 PINN 的设计、实现和性能。我们设计了一个简单的量子 PINN,使用连续变量 (CV) 量子计算框架来解决一维泊松问题。我们讨论了不同的优化器、PINN 残差公式和量子神经网络深度对量子 PINN 精度的影响。我们表明,在量子 PINN 的情况下,优化器对训练景观的探索不如经典 PINN 有效,而基本随机梯度下降 (SGD) 优化器的表现优于自适应和高阶优化器。最后,我们重点介绍了量子和经典 PINN 在方法和算法上的差异,并概述了量子 PINN 开发的未来研究挑战。
一项研究使用半分析方法对反应动力学的研究,描述了在批处理反应器中使用乙二醇 - 琼脂糖固定酶(Penicillin G酰基酶)的异质反应 - 扩散过程的行为
对于其他学士学位课程的毕业生,可以从上述信息与计算机工程学士学位课程的课程中获得 25 ECTS 学分,作为进入此处所述课程的一部分。指定的课程在同等程度上减少了选修课或辅修科目所规定的课程工作量。详细信息请参见附件第 5 部分。选定学士学位课程的录取规则也在附件第 5 部分中概述。但是,允许学生被录取的学士学位课程必须至少包含 180 ECTS 学分。为了获得本科和研究生学位课程总计 300 ECTS 学分,不允许在允许录取的学士学位课程和相关的硕士学位课程中安排同一门课程。
高的问题,在全面进入 2D 数字屏幕界面阶段后,飞 机座舱只有少数的传统机械仪表被保留,大部分的飞 行信息数据都由计算机分析后再在主飞行显示器 ( PFD )上显示出来,这种获取信息的方式大大增强 了飞行员驾驶的安全性。平视显示器( HUD )是飞机 座舱人机交互界面的另一种形式。 HUD 可以减少飞 行技术误差,在低能见度、复杂地形条件下向飞行员 提供正确的飞行指引信息。随着集成化和显示器技术 的不断进步, 20 世纪末至今,飞机座舱有着进一步 融合显示器、实现全数字化界面的趋势。例如,我国 自主研发生产的 ARJ21 支线客机、 C919 民航客机, 其座舱的人机界面设计均采用触控数字界面技术代 替了大部分的机械仪表按钮 [2] 。 20 世纪 70 年代,美军在主战机上装备了头盔显 示系统( HMDs ),引发了空中战争领域的技术革命。 在虚拟成像技术成熟后,利用增强现实( AR )技术 可以直接将经过计算机运算处理过的数据和图象投 射到驾驶员头盔的面罩上。例如,美国 F-35 战斗机 的飞行员头盔使用了虚拟成像技术,将计算机模拟的 数字化信息数据与现实环境无缝融合,具有实时显示 和信息叠加功能,突破了空间和时间的限制。 20 世纪 90 年代,美国麦道飞机公司提出了“大 图像”智能化全景座舱设计理念,之后美国空军研 究实验室又提出了超级全景座舱显示( SPCD )的概 念,充分调用飞行员的视觉、听觉和触觉,利用头 盔显示器或其他大屏幕显示器、交互语音控制系统、 AR/VR/ MR 系统、手 / 眼 / 头跟踪电子组件、飞行员 状态监测系统等,把飞行员置身于多维度的显示与 控制环境中。此外,在空间三维信息外加上预测信 息的时间维度功能也是未来座舱显示器的发展趋势 [3] 。 2020 年,英国宇航系统公司发布了一款第六代 战斗机的概念座舱,去除了驾驶舱中所有的控制操 作仪器,完全依靠头盔以 AR 形式将操作界面显示 出来。由上述分析可知,未来基于 XR 环境下的虚拟 增强型人机界面将成为飞机座舱人机交互的全新途 径之一。 在学术界,有关飞机座舱人机交互界面的研究也 取得了较为丰硕的成果,其中代表性研究成果见表 1 。
按钮布局的一致性,机载显控系统的人机工效研究也 逐渐得到了相关领域的重视。为了解决仪表板日益拥 挤的问题,工程师在第 2 代机电伺服仪表的基础上对 飞行仪表进行综合,也对指示相关信息的仪表进行综 合,减少仪表数量;同时将无线电导航和其他经过计 算机加工的指引信息综合进相关的显示器中,形成第 3 代飞机仪表,即综合指引仪表。综合指引仪表不但 可以显示飞机综合的实时状态信息,同时还通过指引 信息告诉飞行员如何正确操纵飞机,以达到预定飞行 状态或目的地 [5] 。第 3 代头盔显示系统首次采用虚拟 成像技术,可直接将虚拟画面投射到驾驶员的面罩 上,配合计算机图像和数据处理运算技术,具备了实 时呈现画面的能力。 以人工智能、大数据为代表的信息技术在军事领 域广泛应用,现代战争形态演变不断突破,向着机械 化、信息化、智能化的方向发展。进入 21 世纪,触 屏及语音交互的方式取代了烦琐复杂的硬件按钮操 作,更为清晰的数字化屏幕也为信息显示提供了更大 的发展空间。第 4 代新型战斗机的机载设备通过更 大、更清晰的数字化屏幕呈现出更加多样的信息内 容。这一时期的人机交互主要通过数字屏幕进行信息 输出,通过语音、触摸屏和简洁的按键等多通道进行 信息输入。未来飞行员头盔的发展趋势是研制功能强 大、集综合性防护于一体的头盔系统,全息投影技术 也会逐渐发展成熟并应用于头盔显示器中 [6] 。历代战 机座舱显控界面见图 1 。 对战机座舱显控系统的发展,各领域的研究人员 针对人因工效、人机交互、座舱显示技术、人机协同 等方面进行了一系列研究。总结 20 世纪 80 年代至今具 有代表性的人物及研究成果,其研究成果引用量较高, 为座舱显控发展提供了理论依据或技术支撑,见表 1 。 军事技术的发展促使战场环境复杂性的大幅提 升,如 F–35 的大屏幕显示器将远不能满足飞行员获 取信息数据流的显示需求,而未来战斗机为了隐身, 会减小座舱空间,进而缩小座舱显示面积 [25] 。座舱内 的系统控制器将尽可能简化,除了保留一些控制飞行 的基本操作杆和少数与安全相关的控制器,其余的操
一般的学术法规和学生规则规则一般学术法规(G法规)和一般学生规则适用于该大学的所有教职员工和注册学生,以及所有接受比勒陀利亚大学占有一席之地的潜在学生。在注册计划时,学生承担了确保他们熟悉适用于其注册的一般学术法规,以及相关年鉴中规定的特定于计划的特定教师和特定于计划的法规和信息。关于这些法规的无知将不会被视为任何违法行为的借口,也不会被视为上述任何法规的例外。G法规每年更新,可以在此信息发布后修改。
① 输入发行者・授权者的信息。 ② 在传达事项中,请勾选成分信息 ※ 和合规性评估信息。 ※本公司要求FMD (所有成分) 时,请在FMD上打勾后提供。 ③ 请勾选SCIP信息的所有项目。