第1,2节研究确定性计算。计算的非确定性方面(输入,互动,错误,随机化等)在高级理论和实践中至关重要且具有挑战性。将它们定义为确定性计算的扩展很简单。后者在概念上更简单,需要精心设计的模型才能进行定义。如果我们需要对所有必需的资源进行精确度量,那么这些模型可能会很复杂。但是,如果我们只需要定义可计算的内容并获得所需资源的非常粗糙的幅度,则所有合理的模型都相同,即使是最简单的模型。我们将非常关注这个令人惊讶和重要的事实。最简单的模型对于证明负面结果最有用,并且最有用的模型可用于积极结果。我们从所有模型共同的术语开始,逐渐使其更具体地针对我们实际研究的术语。我们表示计算为图:边缘反映了节点(事件)之间的各种关系。节点,边缘具有属性:标签,状态,颜色,参数等。(影响计算或其分析)。因果边缘从每个事件运行到其出现或属性所必需的所有事件。它们形成有向无环图(尽管可以人为地添加循环以标记计算的外部输入部分)。我们将仅研究同步计算。他们的节点具有时间参数。它反映了逻辑步骤,不一定是任何物理时钟的精确值。其他称为平行。因果边缘仅跨越短(通常为\ leq 3时刻)时间间隔。节点原因中的一个事件称为其父。指针边缘将每个事件的父级连接到其所有其他可能的原因,并反映允许同时事件相互作用并具有关节效应的连接。用相同来源的指针具有不同的标签。给定时间的事件/边缘的(标记)子图是模型的即时内存配置。每种非末端配置都有可能会更改的活动节点/边缘。在计算的任何步骤中只有一个小活动区域的模型都是顺序的。
计算史 Sotirios G. Ziavras,新泽西理工学院电气与计算机工程系,新泽西州纽瓦克 07102,美国 关键词 计算机系统、早期计算机、电子计算机、电子计算机的各代、大型计算机、机械计算机、微处理器架构、小型计算机、并行计算机、超级计算机。 目录 1. 早期(非电子)计算机 2. 电子计算机 2.1. 第一代(1945-1955) 2.2. 第二代(1955-1965) 2.3. 第三代(1965-1974) 2.4. 第四代(1974-1989) 2.5. 第五代(1990 年至今) 词汇表 CPU:中央处理单元。 分布式处理:在计算机网络上执行单个程序的过程。局域网:在相对较小的物理区域内连接的计算机网络。大型计算机:性能极佳的大型高成本计算机。大规模并行计算机:包含数百或数千个(微)处理器的并行计算机。MIMD:多指令流,多数据流。微型计算机:由微处理器驱动的小型计算机。小型计算机:成本远低于大型计算机(如大型计算机),但性能非常出色。多计算机:包含许多微处理器的并行计算机系统,这些微处理器通过静态点对点物理网络互连。多处理器:包含许多微处理器的并行计算机系统
摘要。音频放大器是经典的、常用的电子电路;特别是在高瓦数放大器的应用中;A 类音频放大器最受欢迎,并且具有最佳音质。然而,它们的扩展率低,效率低。例如,著名的 A 类电路模型:Krell KSA-100,由 3 对复合功率放大器组成,使用正负 45 伏的电源,会一直产生高电流和高功耗,即,当输入信号电压为零时,电路会产生流过最终功率放大器(1 安培对)的电流。这导致总电流始终达到 3 安培或 137 瓦。研究人员将进行研究,通过降低电源电压来减少这种条件下的功率损耗,但电路仍可以像以前一样有效地扩展音频信号。实验用交流电源变压器调节输入电压,可在28伏至145伏之间调节,使直流电源在10伏至45伏之间改变电压。在8欧姆负载下输入100mVpp的输入信号,1kHz正弦波频率,并将电压从45伏降低到输出放大器仍能保持输入信号。实验结果表明,当降低电源电压时,功率损耗相应减少。
1 卡塔赫纳大学系统工程专业学生,INGESINFO 研究小组成员。邮箱:dromerom@unicartagena.edu.co 2 来自北方大学的系统工程师;布卡拉曼加自治大学计算机科学硕士学位。卡塔赫纳大学系统工程项目研究教授。 INGESINFO 研究小组成员。 ltovarg@unicartagena.edu.co 3 卡塔赫纳大学教育硕士。卡塔赫纳大学经济科学学院工商管理项目研究教授。电子邮件: poyolaq@unicartagena.edu.co
在本文中,超计算指的是可以构建形式系统,识别、设计、构建或利用物理系统,这些系统具有超越图灵机的能力。超计算通常指可以计算非递归函数的系统,但也有人谈到超图灵系统,它不一定计算任何非递归的东西,但在复杂性或其他指标方面却胜过图灵机。然而,一般来说,超计算和超图灵这两个术语往往可以互换使用,不同的学科对其中一个术语略有偏好。我希望说服你,数学或物理学中没有任何东西可以阻止这种系统的实现。但从某种意义上说,这是一个次要问题,因为即使我们接受超计算在物理现实中没有任何基础,它仍然是一个非常有用的逻辑思想,它提供了一个比其单纯的计算对应物更全面的数学、物理和生物过程模型。借用 MacLennan 的话 [1] ,基于标准递归的可计算性本身无法满足对具有正交幂概念的模型的现实和迫切需求,尤其是当计算
正则化向量或单位向量是范数等于 1 的向量。如果所有向量都是正则化的并且相互正交,则称基是正交的。具有内积的有限向量空间称为希尔伯特空间。为了使无限向量空间成为希尔伯特空间,它除了具有内积之外,还必须遵循其他属性。由于我们主要处理有限向量空间,因此我们使用术语希尔伯特空间作为具有内积的向量空间的同义词。有限希尔伯特空间 V 的子空间 W 也是希尔伯特空间。与 W 的所有向量正交的向量集是希尔伯特空间 W - 称为正交补。V 是 W 和 W - 的直接和,即 VDW˚W-。N 维希尔伯特空间将用 HN 表示以突出其维数。与系统 A 相关的希尔伯特空间将用 HA 表示。
说到视觉计算,我们可以想到很多东西。相机?没错,它们将世界变成赏心悦目的图像。计算机图形学?没错,它们模拟了如何捕捉赏心悦目的图像,就像在场景中放置了一台相机一样。计算机视觉?没错,它通过解释视觉信息(即图像)来推断世界的语义信息(例如,对象类别)。显示器?没错,它们生成视觉信息(即灯光)来表示预期的场景。那么增强现实 (AR) 和虚拟现实 (VR) 呢?当然有;事实上,AR/VR 需要上述所有东西无缝协作。但是,我们可以松散地将众多事物与视觉计算联系起来,它们之间的根本联系是什么呢?图 1 显示了统一视觉计算不同领域的关键概念:1)在三个基本信息域(即光学、电气和语义域)中表示物理世界,2)处理这些域内的信号,3)在这些域之间转换信号。我们将以人类视觉系统 (HVS) 为例介绍一些关键概念(第 2 章)。然后,我们将扩展到另外三个视觉计算领域(计算机成像、计算机图形和渲染以及机器视觉),比较和对比