• . • 距离(这是从桥面上游侧到桥梁外侧上游和下游外侧横截面的距离) • 沿流动方向的桥面宽度 • 过道路流量的堰系数 • 站(沿桥面/道路从左到右的距离)、桥面上游侧和下游侧的高弦和低弦高程
HOP 和一些利益相关者对该指数的透明度表示担忧。为了解决这些问题,我们建议创建一个公共网站来收集和显示可修复性指数得分;包括完整和详细的计算网格以及生产商计算维修得分所依据的承诺(特别是其备件的可用时间和获取方式)。HOP 要求制造商有义务提供其产品的完整指数计算网格,而不仅仅是像现在这样提供主要标准得分的摘要网格。这将有助于实现法国政府想要的“市场控制”,但在现实中几乎不可行。它还将有助于提高消费者对该指数的理解力,目前由于缺乏有意义的测量单位,该指数的理解力有限。此外,这些措施将使消费者能够访问发生故障时不再销售的产品的指数,并要求生产商对其承诺负责;甚至通过告知指数的演变和分数分布来协助政府进行未来的调整,例如评分门槛。
网格适应在CFD中至关重要,对于动态完善并优化计算网格,增强了捕获复杂流动特征的精度。基于度量的网格适应性,虽然在数学上健壮,但通常依赖于伴随解决方案来进行误差估计,这可以显着增加计算需求。为了应对这一挑战,这项研究旨在开发一种机器学习驱动的方法来改编CFD,从而消除了对计算强度密集的伴随解决方案的需求。在追求此目标时,我们采用集合模型和图形卷积网络(GCN)来预测在适应过程中每个单元格的局部误差估计器。我们的发现表明,GCNS胜过各向同性网格的集合模型,而两个模型在各向异性网格中产生相似的结果。这些结果表明,我们的机器学习驱动的方法消除了求解伴随方程的误差估计的需要,为在复杂的流动方案中为更有效的CFD模拟铺平了道路。
强大的海啸预警和减灾系统还依赖于高质量数据和科学产品的自由和开放交换以及长期管理。报告目前并未解决所有海啸观测和产品存档问题。未解决的其他主题包括:非美国沿海水位数据的长期存档和访问,包括全球海平面观测系统 (GLOSS);海啸模型的存档,包括模型输入(计算网格、变形源、边界条件和强迫)和输出; NOAA 和国家海啸灾害缓解计划 (NTHMP) 发布的海啸技术报告;已发布的疏散地图和安全手册;事件后调查报告;以及国际海啸信息中心的作用。所有这些主题都需要 NOAA 内部以及与 NTHMP 和国内外其他合作伙伴进行进一步讨论。
建模方法基线沿海地区建模需要了解沿百慕大海岸线作用的沿海过程。该模型的基本起点是构建计算网格,可以在每个仿真时间步骤中从中计算出空间差异。Mike 21使用灵活的计算网络计算波浪和流体动力学。灵活的网格非常适合风暴潮计算,因为它允许建模大型复杂区域,这些区域可能需要同时详细的较小特征的分辨率。使用该岛东部和西部收集的数据建立并校准了该模型。所有用于模型验证的索引被认为可以接受模型性能。这种统计方法验证了光谱波模型,该模型被信任地使用,以对近岸地区日常波浪条件的长期数据库进行现实表示。百慕大的身体状况使得很难获得良好的电流数值校准。通常,电流变化很大,这不容易由数值模型表示。
环氧复合材料填充了不同量的橡胶颗粒和无骨料的纳米颗粒,以检查多相颗粒对复合材料机械性能的协同作用。在这项工作中,使用ABAQUS中的扩展有限元方法模拟裂纹传播(生长),并将位移,压力和裂纹传播的结果与实验结果进行比较。这项研究的主要目的是评估有限元方法的性能,预测结果所需的要素的数量以及扩展有限元方法预测裂纹传播行为的能力。本研究研究了裂纹传播位移和计算网格独立性中所需的元素数量,还比较了Abaqus中2D中纳米颗粒增强的环氧聚合物获得的数值和实验结果。颗粒分离和裂纹繁殖,在拉伸模拟过程中吸收能量,可以在表面硬化和增强中起关键作用。该模拟证实了纳米复合界面的弱化和加强机制,并证明了扩展有限元方法是模拟纳米复合材料的机械行为的有效方法。关键字:CACK传播; XFEM;强化;环氧树脂;纳米复合
网格支持的CFE是CFE,该CFE作为默认电力服务或公用事业或电动服务提供商的电力混合物的一部分交付给联邦客户。如实施说明的第4.2.4节所述,网格供应的CFE是四种CFE策略之一 - 以及购买的CFE,现场CFE和购买的能源属性证书(EACS) - 可以在供应商中逐个销售或堆叠的能源属性证书(EACS)。实施指示规定,联邦能源管理计划(FEMP)将使用Egrid来计算代理商可以作为网格支持的CFE包含的CFE剩余网格混合物2,直到基于市场数据获得更精致的计算方法(第4.2.4节)。对于许多联邦设施,已获得新的市场数据,该数据支持了一种精致且首选的方法来计算网格供应的CFE。新的“供应商证明”方法旨在根据州和地方法律或法规捕获供应商现有的网格混合物中的CFE。代理商可以使用电力供应商证明的CFE百分比,而不是FEMP计算的残留网格混合百分比,只要电力供应商
直到最近,物理模型还是研究防波堤在波浪攻击下行为细节的唯一方法。从数值角度来看,由于几何形状复杂,存在强烈的非平稳流、自由边界和湍流,所涉及的流体动力学过程的复杂性迄今为止阻碍了 Navier-Stokes 方程在装甲块内的直接应用。在目前的研究中,最新的 CFD 技术用于为防波堤的设计分析提供一种新的、更可靠的方法,特别是在与爬高和越顶相关的方面。通过重叠各个虚拟元素以形成由块界定的空白空间,在数值域内模拟实体结构。因此,通过定义精细的计算网格,在间隙内定位足够数量的节点,并执行完整流体动力学方程的完整求解。在本文中介绍的工作中,数值模拟是通过将三维雷诺平均纳维-斯托克斯方程与 RNG 湍流模型和用于处理自由表面动力学的流体体积法相结合来进行的。本研究的目的是研究这种方法作为设计工具的可靠性。考虑了两个不同的防波堤,均位于西西里岛南部:一个是典型的采石场石防波堤,另一个是更复杂的设计,包含溢流盆和由 Coreloc® 块组成的装甲层。
近年来,各种出版物讨论了与微通道壁上尖锐的结构结合使用超声检查以实现快速混合的可能性。用超声操作通道时,锋利的边缘会振动并产生局部声流现象,从而导致流体的混合大大增强。使用低kHz范围内的声频率,波长远大于通道宽度,因此可以假定通道段的统一致动,包括锋利的边缘。在先前的工作中,我们在Comsol多物理学的声学模块中采用了新的声学流界面,以模拟两种相同的流体与不同物种浓度的混合,并在含有锋利的锋利,均匀间隔,均匀间隔,均匀的三角形边缘的2D或3D段中的不同物种浓度。我们的建模管道结合了压力和热雾声的声学流界面与背景流和稀释物种界面的运输以模拟两个不同的物种浓度的额外的层流界面。计算网格需要在锋利的边缘上高度完善,以解决粘性边界层。使用四个研究步骤解决模型,首先解决频域中的声学,然后计算声流流的固定解,层流背景流以及浓度场。