2。Wu,Y.-T。; Kumbhar,S。; Tsai,R.-F。; YANG,Y.-C。; Zeng,W.-Q.; W.-C。Hsu; Chiang,Y.-W。;杨,t。;* lu,i-c。;*王,Y.-H。* acs org。inorg。au,2024,4,306。“操纵增强电化学水氧化的速率和过电势:含有非处以生成双(Benzimidazole)吡唑啉配体的钴催化剂的机械见解”3。3。Lee,Z.-H。; Lin,P。C。; Yang,T。* J. Chin。 化学。 Soc。 2023,70(5),1095。 “配体的逆设计使用由数据驱动的配体强度度量半监督的深生成模型” 4. HSU,W.-C。; Zeng,W.-Q. ; lu,I.-C。* Yang,t。;* Wang,Y.-H。* Chemsuschem。 2022,E202201。 “用于均匀水氧化的双核钴络合物:通过氧化还原非无纯配体进行调整和过电势”5。 Yang,T。;* Berry,J。F.* J. Chem。 理论计算。 2018,14,3459。 “计算网格上的数值核第二个衍生物:复杂分子系统上的启用和加速频率计算”(CO)首次撰写的出版物6。 Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。 J. * J. Phys。 化学。 A,2020,124,3286。 “看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。 黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。Lee,Z.-H。; Lin,P。C。; Yang,T。* J. Chin。化学。Soc。2023,70(5),1095。“配体的逆设计使用由数据驱动的配体强度度量半监督的深生成模型” 4.HSU,W.-C。; Zeng,W.-Q. ; lu,I.-C。* Yang,t。;* Wang,Y.-H。* Chemsuschem。 2022,E202201。 “用于均匀水氧化的双核钴络合物:通过氧化还原非无纯配体进行调整和过电势”5。 Yang,T。;* Berry,J。F.* J. Chem。 理论计算。 2018,14,3459。 “计算网格上的数值核第二个衍生物:复杂分子系统上的启用和加速频率计算”(CO)首次撰写的出版物6。 Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。 J. * J. Phys。 化学。 A,2020,124,3286。 “看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。 黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。HSU,W.-C。; Zeng,W.-Q.; lu,I.-C。* Yang,t。;* Wang,Y.-H。* Chemsuschem。2022,E202201。 “用于均匀水氧化的双核钴络合物:通过氧化还原非无纯配体进行调整和过电势”5。 Yang,T。;* Berry,J。F.* J. Chem。 理论计算。 2018,14,3459。 “计算网格上的数值核第二个衍生物:复杂分子系统上的启用和加速频率计算”(CO)首次撰写的出版物6。 Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。 J. * J. Phys。 化学。 A,2020,124,3286。 “看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。 黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。2022,E202201。“用于均匀水氧化的双核钴络合物:通过氧化还原非无纯配体进行调整和过电势”5。Yang,T。;* Berry,J。F.* J. Chem。 理论计算。 2018,14,3459。 “计算网格上的数值核第二个衍生物:复杂分子系统上的启用和加速频率计算”(CO)首次撰写的出版物6。 Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。 J. * J. Phys。 化学。 A,2020,124,3286。 “看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。 黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。Yang,T。;* Berry,J。F.* J. Chem。理论计算。2018,14,3459。“计算网格上的数值核第二个衍生物:复杂分子系统上的启用和加速频率计算”(CO)首次撰写的出版物6。Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。 J. * J. Phys。 化学。 A,2020,124,3286。 “看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。 黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。J.* J. Phys。化学。A,2020,124,3286。“看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J.am。化学。Soc。2017,139,17376。am。“反转空间效应:使用'有吸引力的'非共价相互作用来直接催化硝基转移”⊥这些作者同样贡献了8。Dolan,N。S。; ⊥Scamp,R。J。; ⊥Yang,t。; ⊥Berry,J.F。;* Schomaker,J。M.* J. 化学。 Soc。 2016,138,14658。 “催化剂控制的,可调节的,化学选择性银催化的分子间硝基转移:实验和计算研究”⊥这些作者同样贡献了9。 Yang,T。; Quesne,M。G。; Neu,H。M。; Cantu,F。G。; Goldberg,D。p。;* De Visser,S。P.* J. am。 化学。 Soc。 2016,138,12375。 “ Mn(V) - 氧化物种中的单线与三重反应性:针对实验证据的理论预测” 10。 varela-álvarez,a。; ⊥Yang,t。; ⊥詹宁斯(H。) K. P. Kornecki; Macmillan,S.N。;兰开斯特(K. M。); Mack,J。 B. C。;Dolan,N。S。; ⊥Scamp,R。J。; ⊥Yang,t。; ⊥Berry,J.F。;* Schomaker,J。M.* J.化学。Soc。2016,138,14658。“催化剂控制的,可调节的,化学选择性银催化的分子间硝基转移:实验和计算研究”⊥这些作者同样贡献了9。Yang,T。; Quesne,M。G。; Neu,H。M。; Cantu,F。G。; Goldberg,D。p。;* De Visser,S。P.* J. am。 化学。 Soc。 2016,138,12375。 “ Mn(V) - 氧化物种中的单线与三重反应性:针对实验证据的理论预测” 10。 varela-álvarez,a。; ⊥Yang,t。; ⊥詹宁斯(H。) K. P. Kornecki; Macmillan,S.N。;兰开斯特(K. M。); Mack,J。 B. C。;Yang,T。; Quesne,M。G。; Neu,H。M。; Cantu,F。G。; Goldberg,D。p。;* De Visser,S。P.* J.am。化学。Soc。2016,138,12375。“ Mn(V) - 氧化物种中的单线与三重反应性:针对实验证据的理论预测” 10。varela-álvarez,a。; ⊥Yang,t。; ⊥詹宁斯(H。) K. P. Kornecki; Macmillan,S.N。;兰开斯特(K. M。); Mack,J。B. C。;B. C。;
“ 17。因此,我们注意到,受访者的纠纷通知第1/2016号与计算网格约束期间的激励措施有关,而VIDE账单纠纷通知号则没有。2/2016和2016年第3/2016号法案纠纷通知,被告还辩称,通过依靠第9.7.1.1(c)条的规定阅读PPA第9.3.1条,对网格限制期间的费用不承担关税。此外,VIDE账单争议通知号。2/2016,被告还提出了与2015年11月和2015年12月的法案有关的争议。 何时请愿人 1已同意修改该法案,以响应1.03.2016的信件,以回应第1号法案纠纷通知号(与激励措施的计算有关),它拒绝修改账单,以响应法案纠纷通知号。 2/2016和账单争议通知号 3/2016作为与关税支付有关的,不仅是激励措施的计算。2/2016,被告还提出了与2015年11月和2015年12月的法案有关的争议。何时请愿人1已同意修改该法案,以响应1.03.2016的信件,以回应第1号法案纠纷通知号(与激励措施的计算有关),它拒绝修改账单,以响应法案纠纷通知号。2/2016和账单争议通知号3/2016作为与关税支付有关的,不仅是激励措施的计算。,不仅是激励措施的计算。
大规模的可再生能源资产的大规模部署可能会由于对拥塞管理和储备提供的影响而产生全系统的成本,并且如果受到限制,对碳排放的影响可能有限。我们可以通过引入三种新的成本组件来进一步增强英国可再生能源的成功激励计划,称为“合同”(CFD),以内部化这些系统范围的外部性。提出的方案可以帮助:(i)通过发出可再生资产可以从整个系统的角度提供更多价值来激励更有效的投资,(ii)促进具有不同水平间歇性的可再生能源技术之间的更公平的竞争,并且(iii)通过计算网格重新确定的效果来减少实际的碳发射。发达的案例研究表明,大不列颠北部地区(GB)的可再生能源一代的另外一个MWH增加了交通拥堵管理的成本5.61英镑/MWH(占CFD 2019年价格的14%),并且由于GRID REDISPATTE降低了潜在的碳排放减免9%(23.52 KGCO2/MWH)。相比,在南部地区的部署可能会使拥塞成本降低4.04英镑/兆瓦,并且可以将潜在的碳减排增加17%(44.33 kgco2/hwh)。最后,GB中间歇性风能的另外一个MWH可以将储备的成本提高6.58英镑/兆瓦,而一项完全可预测的技术将使储备成本降低2.44英镑/兆瓦。
2024年7月这些观察的目的是,在考虑评估与可再生能源活动相关的方法论的评估时,始终是自愿碳市场诚信委员会(ICVCM)的委员会,确定公开诚信委员会的观察是有益的,以支持这一类别的目的,以支持未来的方法论。这些观察结果是无约束力的,并且不会影响或构成评估框架,评估程序或任何决定(根据评估框架定义)的任何部分,并由诚信委员会发布仅出于信息目的而发布。诚信委员会可能会不时发布其他类别的其他观察结果,在此类别中,它认为这可能对CCP符合条件的计划和其他利益相关者有用,并且可能会根据进一步的评估流程或信息不时更新和修改其观察结果。观察并不是完整委员会的详尽观点,也不是评估过程中所涉及的所有方面。不可依赖观察结果,因为它们仅是出于信息的目的,并且发布的观察结果不受其他正在进行的评估的影响。与可再生能源方法有关的观察几年,碳市场专家已经注意到,人们对许多可再生能源活动的添加性以及透明地证明在现有方法中批准的这些活动的加法性方面的困难感到担忧。在2019年,是否有一些可再生能源活动已经成熟的问题超出了需要得到碳融资支持的地步,这导致了两个主要计划来修改其资格标准。1,2方法论专家指出,活动可能存在活动差异(因此,即使在没有碳收入的给定的一组潜在活动中,也可能会有一些活动)。ICVCM不评估个别缓解活动,而是关注碳信贷计划,方法论批准和保证碳信贷计划遵守评估框架。多方利益相关者工作组(MSWG)3进行了对可再生能源方法的评估,以遵守评估框架的关键标准。MSWG指出了电力水平成本和每种可再生能源技术类型的渗透率的潜在相关性,以及在这种特定情况下。MSWG考虑的文献还指出了与这些方法的定量方案中某些假设有关的问题,包括计算网格发射因子。
在现代军事冲突中爆炸脑损伤无处不在,发病率显着和死亡。然而,爆炸超压波引起人类特定颅内损伤的机制尚不清楚。审查了接触BLAST的服务成员的神经角膜神论者和神经外科医生的临床经验,揭示了对脑血管的损伤模式,表现为蛛网膜下腔出血,假脑膜瘤,早期弥漫性弥漫性大脑肿瘤。此外,在以下组织界面处的爆炸性脑损伤受害者(TBI)的受害者的精神病学病例系列(TBI)显示出独特的星形胶质疤痕模式:亚皮拉神经胶质板,血管周围,周围性脑膜周围和脑灰白色界面。BLAST TBI中临床和神经病理发现的统一特征是材料界面的损伤的共同点,无论是固体液体还是固差界面。这激发了以下假设:BLAST TBI是颅内机械界面处的损伤。为了研究颅内界面动力学,我们使用模型的人头简化但包含Gyri,Sulci,脑脊液(CSF),心室和脉管系统的模型进行了新的计算模拟,并具有高空间分辨率。模拟是在混合欧拉(Lagrangian仿真套件)中进行的(通过Zapotec耦合到Sierra Mechanics)。由于较大的计算网格,模拟需要高性能计算资源。这些空化事件与亚型神经胶质板处的高界面应变速率相邻。在多种曝光场景中进行了二十个模拟,包括150、250和500 kPa的超压,1 ms超压持续时间 - 在材料模型参数(脑剪切特性,颅骨弹性模块)中,多次爆炸暴露(前爆炸,侧面爆炸和壁爆炸)在材料模型参数(脑剪切特性,脑剪切特性)中。所有模拟都可以预测CSF内(脑脉管系统驻留的地方)内的流体空化,空化发生在深层且扩散成脑硫。较大的过压模拟(250和500kPa)表现出脑室内的气蚀,这也与邻近的高脑室应变率有关。此外,嵌入式核内血管结构的模型(直径较小至0.6 mm),可预测的血管内空化,邻近高血管周围应变率。