摘要 基于监督学习的目标检测算法是当前目标检测的主流算法,高质量的数据集是目标检测算法获得良好检测性能的前提,数据集的数量和质量越大,模型的泛化能力越强,也就是说数据集决定了模型学习的上限。卷积神经网络以强监督的方式优化网络参数,通过比较预测帧与人工标注的真实帧来计算误差,然后将误差传入网络进行不断优化。强监督学习主要依靠大量图像作为模型进行不断学习,因此图像的数量和质量直接影响学习的结果。本文提出了一个用于检测空间中常见目标的数据集STAR-24K(即超过24000幅图像的空间目标识别数据集)。由于目前没有公开可用的空间目标检测数据集,我们从 NASA(美国国家航空航天局)和 ESA(欧洲航天局)官方网站发布的图片和视频等一系列渠道中提取了一些图片,并将其扩展到 24,451 张图片。我们对流行的物体检测算法进行了评估以建立基准。我们的 STAR-24K 数据集在 https://github.com/Zzz-zcy/STAR-24K 上公开。关键词:公开数据集、空间目标检测、深度学习、计算机视觉。
2.1 参考应用程序第一个参考应用程序 Nek5000 (C1) [1] 是一个基于谱元法 (SEM) 的流体和传热求解器,具有悠久的开发历史。在 20 世纪 90 年代中期,它是第一个可用于分布式内存计算机的代码,并于 1999 年因算法质量和持续的并行性能而获得了戈登贝尔奖。良好的扩展属性是通过将基于 SEM 的域分解为一系列不相交的谱子域来实现的,这允许将全局算子分解为一组局部执行的密集矩阵-矩阵乘法,并结合通过直接刚度求和的通信步骤。这种域分解也可用于提高模拟的可靠性,因为可以在运行过程中动态修改域分解以最小化估计的计算误差。在 EXCELLERAT 中,KTH 将致力于 Nek5000 的开发,重点关注与 WP4 服务数量相对应的多个方面,例如:使用伴随算法(内在优化方法)进行自适应网格细化、不确定性量化(数值方法、数据缩减算法)、使用加速器(移植到新架构、节点级性能工程)或后处理数据缩减(现场可视化)。它涵盖了从预处理阶段开始的整个模拟周期,其中必须生成相对复杂几何的粗六边形网格(网格划分算法)。在模拟阶段,我们将专注于非一致网格的压力预处理器(数值方法)和通信内核(系统级性能工程)。
2.1 参考应用程序 第一个参考应用程序 Nek5000 (C1) [1] 是一个基于谱元法 (SEM) 的流体和传热求解器,具有悠久的开发历史。在 20 世纪 90 年代中期,它是第一个可用于分布式内存计算机的代码,并于 1999 年因算法质量和持续并行性能而获得 Gordon Bell 奖。良好的缩放特性是通过将基于 SEM 的域分解为一组不相交的谱子域来实现的,这允许将全局运算符拆分为一组局部执行的密集矩阵-矩阵乘法,并结合通过直接刚度求和的通信步骤。这种域分解也可用于提高模拟可靠性,因为可以在运行过程中动态修改域分解以最小化估计的计算误差。在 EXCELLERAT 中,KTH 将致力于 Nek5000 的开发,重点关注与 WP4 服务数量相对应的多个方面,例如:使用伴随算法(内在优化方法)进行自适应网格细化、不确定性量化(数值方法、数据缩减算法)、使用加速器(移植到新架构、节点级性能工程)或后处理数据缩减(现场可视化)。它涵盖了从预处理阶段开始的整个模拟周期,其中必须生成相对复杂几何形状的粗六边形网格(网格划分算法)。在模拟阶段,我们将专注于非一致网格的压力预处理器(数值方法)和通信内核(系统级性能工程)。
金属零件的定向能量沉积(DED)添加剂制造过程越来越流行,并且由于它们制造大尺寸的一部分的潜力而被广泛接受。由于过程物理学而获得的复杂热循环导致残留应力和失真的积累。但是,为了准确地对大零件的金属沉积传热进行建模,数值模型会导致不切实际的计算时间。在这项工作中,开发了具有安静/主动元件激活的3D瞬时元素模型,用于建模金属沉积传热过程。为了准确地模拟移动热源,戈德克的双椭圆形模型的实现是用足够小的模拟时间增量来实现的,从而使激光在每个增量过程中移动其半径的距离。考虑使用不同工艺参数制造的不锈钢316L的薄壁壁,用COMSOL 5.6多物理软件获得的数值结果通过在制造20层的底物上记录的实验温度数据成功验证。为了减少计算时间,实现了整个路径上的热源的拉长椭圆形热输入模型。已经发现,通过采取如此大的时间增量,数值模型会产生不准确的结果。因此,该轨道分为几个子轨道,每个子轨道都以一个模拟增量应用。另外,引入了校正因子,该校正因子进一步减少了伸长热源的计算误差。在这项工作中,进行了调查,以发现正确的模拟时间增量或子轨道大小,从而导致计算时间减少(5 - 10次),但仍会产生非常准确的结果(低于温度相对误差的10%)。最后,在发现正确的时间增量大小和校正因子值以减少计算时间产生准确结果的情况下,还建立了新的相关性。