摘要:由于能源管理策略(EMS)的性能对于插电式混合电动总线(PHEB)以有效的方式运作至关重要。考虑到PHEB的电池热特性,近端策略优化(PPO)的多目标EMS旨在提高车辆节能性能,同时确保电池电量状态(SOC)和合理范围内的温度。由于这三个目标相互矛盾,因此通过智能调整培训过程中的权重来实现多个目标之间的最佳权衡。与原始的基于PPO的EMS相比,没有考虑电池热动力学,模拟结果证明了拟议策略在电池热管理中的有效性。结果表明,与其他基于RL的EMS相比,提出的策略可以获得最小能耗,最快的计算速度和最低的电池温度。关于动态编程(DP)作为基准,基于PPO的EMS可以实现类似的燃油经济性和出色的计算效率。此外,在UDD,WVUSUB和实际驾驶周期中确定了所提出方法的适应性和鲁棒性。
在这种干预中,achille mbembe反思了行星生活的方式,交错了他所说的三个大型过程:21世纪初期的公司主权,计算速度制度以及纠缠和分离的辩证法。与我们当代年龄的某种流动性形成鲜明对比的是,Mbembe认为收缩,遏制,监禁和外壳的逻辑是,其结果是全球架设各种墙壁和防御工事,盖茨和飞地作为管理风险,授予安全和保障“身份”的一种方式。这种划分空间,离岸外包和围栏财富,分裂领土,分散空间的实践正在“接壤”的身体。结果,边界不再仅仅是分开不同主权实体的分界线。越来越多地,它们是我们应该用来描述当代资本主义和我们世界一般秩序的有组织的暴力行为。边界不再仅仅是空间中的特定点,而是技术学和不希望的人口的移动机构。非洲和欧洲迫切需要在人类流动问题上相互面对,这是正在进行的行星转变的关键方面。
摘要 — 实时、保证安全的轨迹规划对于未知环境中的导航至关重要。然而,实时导航算法通常会牺牲鲁棒性来换取计算速度。或者,可证明安全的轨迹规划往往计算量太大,无法进行实时重新规划。我们提出了 FaSTrack,即快速安全跟踪,这是一个既能实现实时重新规划又能保证安全的框架。在此框架中,通过允许任何轨迹规划器使用系统的简化规划模型来实现实时计算。该计划由系统跟踪,由更现实、更高维的跟踪模型表示。我们预先计算了由于两个模型不匹配以及外部干扰而导致的跟踪误差界限 (TEB)。我们还获得了用于保持在 TEB 内的相应跟踪控制器。预计算不需要事先了解环境。我们演示了使用 Hamilton-Jacobi 可达性进行预计算的 FaSTrack 和三个不同的实时轨迹规划器以及三个不同的跟踪规划模型对。
摘要——机器能思考吗?或者它们能做“我们所知道的命令”让它们做的事情吗?是否应该将机器从奴役中解放出来,给予它们“公平竞争”的机会,让它们“在所有纯智力领域与人类竞争”?或者这应该与一种贬低“人类理性”的时尚和一条“直接通往纳粹主义”的道路联系起来?战后几年,艾伦·图灵和道格拉斯·哈特里就这些问题展开了辩论,他们对数字计算机作为一种新科学技术的解释不同。哈特里强调了它前所未有的计算速度,并设想了它在物理、后勤、能源和战争中的应用。图灵设想了它在生物学和认知方面的应用,强调了它在智力上超越人类的潜力,包括被认为是人类独有的能力,哈特里通过调动艾达·洛夫莱斯的笔记来淡化这些能力。本文探讨了图灵和哈特里的争论,并将他们的立场与他们对战后英国的看法进行了比较。
作为图像处理的一种重要方法,图像差异可以使目标的边缘检测能够实现对象特征和信息压缩的识别,并且可以通过光学信息技术来提高计算速度。传统的光学图像差异方法主要依赖于使用经典4F系统的空间光谱过滤,而某些工作则集中在1D或单向之间。直到近年来,跨境的快速发展才促进了图像不同的方法。在这项工作中,基于硅空心砖电介质谐振元脉冲的发射光场演示了拉普拉斯操作设备。可以通过刺激元图支持的角度选择性的环形偶极子(TD)共振来获得光拉拉普拉斯操作所需的光传递函数(OTF)。这个空心的硅砖块不仅实现2D二阶检测,而且具有接近0.4的数值光圈,并且可以直接集成成像系统,并且可以直接集成。此类MetadeVice可能可能应用于光学传感,显微镜,机器视觉,生物医学成像等的领域。
量子物理和力学基础:量子理论是现代物理学的理论基础,它解释了原子和亚原子层面上物质和能量的性质和行为。物质和能量在该层面上的性质和行为有时被称为量子物理和量子力学。量子物理解释了原子和亚原子粒子以及最小的能量包(如光子)的工作原理。量子力学有助于解释原子尺度上发生的事情。量子力学的一些关键特性促成了技术突破。1) 叠加 - 亚原子粒子可以存在于两种状态之一或同时存在于两种状态中。2) 纠缠 - 分离的亚原子粒子瞬间相互响应的能力。3) 不确定性 - 我们无法在任何时间点知道量子粒子的精确位置和状态。量子技术研究指导了激光、磁共振成像 (MRI)、超导磁体、发光二极管、晶体管和半导体/微处理器以及电子显微镜等技术的发展。量子力学还为计算、精确测量、密码学和不可破解通信等关键领域的巨大飞跃创造了潜力。量子信息科学 (QIS):量子信息科学是信息理论和量子物理学的结合,旨在开发新的、强大的信息处理方式。量子信息科学有许多可能的应用,其中一些已经投入使用或处于早期/中期测试阶段——例如卫星通信和高灵敏度传感器。其他一些应用有可能在未来 5-10 年内成熟。一些潜在的应用包括量子传感器,它可以发现新的地下石油和矿藏,或探测传统设备不够灵敏而无法辨别的核爆炸地震信号。新的便携式量子导航设备已经在接受严格测试,即使 GPS 网络被干扰或中断,它也能使士兵和武器平台找到方向。 QIS 还可以帮助开发量子和传统加密方法都无法破解的通信系统。中国已经在两座城市之间运营了一个安全的量子通信网络,并展示了其运行情况。1 量子计算:75 多年来,计算机的基本架构基本保持不变。先进材料和计算机科学的研究继续推动着经典计算速度和能力的极限。然而,一段时间以来,经典计算的物理极限已经显而易见。量子计算目前正处于上市前阶段,但它的成熟有望在计算速度和性能上实现超越传统计算的非凡提升,在某些方面
1.1.用极坐标在球体上定义的球冠(虚线圆)(ρ 是相当于 ψ 的径向距离(弦长))............................................................................. 2 1.2.显示计算重力势能数的方案的流程图............................................................. 11 1.3.空中自由空气重力扰动(mgal)插值到规则的二维水平坐标网格上,但飞行高度不规则............................................................. 16 1.4.埃塞俄比亚航空重力测量的测量点分布。重力扰动(mgal)............................................................................................. 17 2.1.质量线元素的几何形状及其相对于半径矢量 R 的重力吸引力。............................................................................................................. 39 2.2.垂直线质量元素相对于质量元素法向重力方向的垂直和水平重力分量 ...................................................................................................................... 41 2.3.通过点质量的垂直阵列近似垂直线质量元素 ...................................................................................................................................... 44 2.4.用于近似垂直棱柱的圆柱扇区的几何形状.................................................................................................... 47 2.5.将垂直线质量元素和多点的重力和潜在模型的精度与从圆柱扇区导出的相应模型进行比较,作为水平距离的函数。(a) 重力差异(mGal)。(b) 重力差异(mgal)。(b) 电位差 ) ( 2 2 − s m ......................................................... 52 2.6a-c.在源质量附近计算的垂直线质量元素、多点和扇区的重力和重力势能比较 – 在可变海拔和恒定水平距离 90 m。 (a) 重力 (mgal)。(c) 电位差 ) ( 2 2 − s m ......................... 54 2.7a-b.由于测试质量对较长距离重力和电位的影响,比较垂直线质量元素相对于多点的精度。(a) 重力差异 (b) 电位差异。........................ 56 2.8.计算地形质量对重力和电位影响所需的垂直线质量元素、多点和扇区的计算速度比较势。百分比与多点计算速度有关。................................................................................................................................... 58 2.9a-b。从代表埃塞俄比亚及其周边地区的 SRTM 数据中评估航空重力测量点的现场地形重力和势,使用多点表示半径 1 公里内的内区,使用刺猬表示半径更大的区域。(a) 重力(mgal)。(b) 势 ) ( 2 2 − s m ............. 59 2.10。消除地形引力影响后,从航空重力扰动得出的埃塞俄比亚布格扰动图(mgal)........... 60 2.11。根据代表埃塞俄比亚及其周边地区的 SRTM 数据的航空重力观测计算得出的压缩地形重力模型(截至 2159 年 = n 的系列完整数据)............................................................. 64
在绝热量子计算中,找到汉密尔顿量间隙随绝热扫描过程中变化的参数的依赖关系对于优化计算速度至关重要。受这一挑战的启发,在本文中,我们探索了深度学习的潜力,即应用不同的网络架构发现从完全识别问题汉密尔顿量的参数到前面提到的间隙参数依赖性的映射。通过这个例子,我们推测这类问题可学习性的一个限制因素是输入的大小,也就是说,识别汉密尔顿量所需的参数数量如何随系统大小而变化。我们表明,当参数空间随系统大小线性扩展时,长短期记忆网络能够成功预测间隙。值得注意的是,我们表明,一旦将这种架构与卷积神经网络相结合来处理模型的空间结构,甚至可以预测比神经网络在训练期间看到的系统尺寸更大的系统尺寸的间隙演变。与现有的计算间隙的精确和近似算法相比,这提供了显著的速度提升。
海上运输对降低燃料消耗的需求日益增加,这推动了高燃料效率发电厂的使用和电源管理系统 (PMS) 的开发。目前对船上 PMS 的研究大多属于集中式,这种系统易于实施,能够收敛到全局最优解。然而,集中式技术可能存在计算负担过重和单点故障的问题。考虑到船舶未来向区域电力分配 (ZED) 发展的趋势,分布式 PMS 正成为一种替代选择。为了在高波动推进负载下实现船舶高燃料效率运行,本文开发了一种实时分布式 PMS,它可以获得与集中式 PMS 一样好的燃油经济性,但计算速度更快。分布式 PMS 以高度计算高效的方式结合了基于过滤器、基于规则和基于优化的方法,基于三层构建,不仅可以保证高燃料效率,还可以在不同航行模式甚至故障条件下保留足够的能量。通过收敛测试和多个案例研究,证明了所提出的 PMS 在收敛速度快、燃油效率高和弹性增强方面的有效性。
偏序集或偏序集合的空间高效数据结构是研究较为深入的领域。已知具有 n 个元素的偏序集合可以用 n 2 / 4 + o ( n 2 ) 位表示[30],也可以用 (1 + ϵ ) n log n + 2 nk + o ( nk ) 位表示[19],其中 k 是偏序集合的宽度。在本文中,我们通过考虑偏序集合元素的拓扑标记,使后一种数据结构占用 2 n ( k − 1) + o ( nk ) 位。同样考虑到拓扑标记,我们提出了一种新的数据结构,它可以更快地计算偏序集合的传递约简图上的查询,尽管传递闭包图上的查询计算速度较慢。此外,我们为拓扑标记偏序集合提出了一种替代数据结构,尽管它使用 3 nk − 2 n + o ( nk ) 位空间,但可以更快地计算这两个查询。此外,我们从 BlockDAG(区块链的更具可扩展性的版本)的应用程序的角度讨论了这些数据结构的优势。