创新是释放循环经济充分潜力的核心。可持续产品和实践中的开创性业务不仅获得了竞争优势,而且还获得了可观的财务回报。例如,自2015年以来,对通函解决方案的投资已达到17%。像特斯拉这样的公司,其电池回收计划和巴塔哥尼亚,通过磨损的磨损计划,体现了整合资源有效的设计,闭环系统和创新的重复使用模型如何带来巨大的环境和经济利益。
材料科学与工程(MSE)是一个多学科领域,影响了当今技术社会的各个方面。MSE的核心正在理解材料的结构与性质之间的关系。实际上,现在已经很好地确定,通过优化从宏观到原子尺寸的组成和结构,不仅可以很好地控制材料的性能,而且还可以针对任何特定的应用进行量身定制。在这项努力中,材料表征和分析涉及一系列衍射,成像和光谱方法,在相关的长度尺度下,使结构 - 属性 - 加工 - 处理 - 性能四面体都能使该领域体现。传统上,MSE中的本科课程强调了光学显微镜和光谱法的实际应用,赋予了X射线衍射的工作知识,并且在可用资源的情况下,扫描和透射电子显微镜以及原子力显微镜。然而,在为广泛应用开发材料方面的最新进展,强调了微观结构的原子规模剪裁和利用依赖大小的特性,需要一种跨学科的方法来对材料开发的材料开发进行明智地使用可用特征的方法变得重要。这需要使用广泛的电子,光子,离子,中子和扫描探针进行材料表征和计量的潜在物理原理的一致讨论。然后,我们讨论原子的周期性排列并发展晶体学原理(第4节),这导致了对真实和相互空间中衍射的介绍。在广泛介绍(第1节)之后,本书奠定了特征,分析和计量学的基础,并建立在科学或工程学的任何分支中应该熟悉的概念上。从原子结构开始,我们基于原子内电子跃迁(§2)开发光谱法,其次是键合,分子的电子结构和固体的电子结构和固体激励多种光谱法(§3)。接下来,我们解决了不同的探针,并提供了光子,电子,离子,中子和扫描探针的生成和使用的相关细节(§5),然后介绍了基于离子的散射方法(§5)。光学介绍,光学显微镜,光的极化和椭圆法(第6节)。本书的第二部分包括对衍射和成像方法的全面讨论,这些讨论强调了在材料的表征和分析中广泛使用的技术。这包括X射线(§7),电子(§8)和中子(§8)衍射,以及传输和分析电子(§9),扫描电子(§10)和扫描探针(§11)显微镜。在整个文本中,表征技术也用于引入
4 应用于语义分割的深度学习技术回顾 - https://arxiv.org/pdf/1704.06857.pdf 5 ImageNet 数据集 - https://www.image-net.org/challenges/LSVRC/
VIM:在特定条件下,建立测量仪器或测量系统指示的量值或实物量具或参考材料表示的量值与标准实现的相应量值之间关系的一组操作。海军:校准是将未经验证的精度的测量系统或设备与已知或更高精度的测量系统或设备进行比较,以检测和纠正与所需性能规格之间的任何偏差。
摘要:近年来,建筑行业见证了新兴技术的采用和应用激增。大量证据表明这些技术对建筑项目生命周期的影响。在建筑业采用的众多技术类别中,信息和通信技术 (ICT) 脱颖而出。此类别包括 BIM 模型、现实捕捉、云计算、机器人技术等。然而,缺乏专门针对这些技术对建筑工地重大影响的文献调查。为了弥补这一差距,本研究进行了系统的文献综述,并对建筑管理领域已发表的文章进行了文献计量分析。遵循系统评价和荟萃分析的首选报告项目 (PRISMA) 方法,数据来源于 Scopus 和 Web of Science,涵盖 2009 年至 2023 年期间。研究结果揭示了建筑工地广泛采用的九种主要 ICT 工具,来自 113 个国家的贡献强调了它们的深远影响。尽管有这些积极的方面,本研究也发现了一些值得注意的挑战,并提出了缓解这些挑战的建议。我们开发了一个智能站点数据集成框架,以促进这些技术的无缝集成,同时确保数据安全。本研究为该领域的未来研究提供了基本见解,旨在让建筑行业认识到采用尖端技术对提高建筑工地效率和及时交付项目的重要性。
mioty® 是一种低功耗广域网 (LPWAN) 解决方案,它通过稳健、可扩展和节能的特性克服了这些限制。得益于其专利的电报拆分功能,消息被分成多个子包,并在不同的时间和频率上传输,以便为大规模部署做好准备,而不会受到任何干扰。mioty® 在免许可频谱中运行,并符合 ETSI 标准。
VIM:在特定条件下,建立测量仪器或测量系统指示的量值或实物量具或参考材料表示的量值与标准实现的相应量值之间关系的一组操作。海军:校准是将未经验证的精度的测量系统或设备与已知或更高精度的测量系统或设备进行比较,以检测和纠正与所需性能规格之间的任何偏差。