量子扰乱描述了信息在量子系统中扩散到许多自由度的过程,这样信息就不再是本地可访问的,而是分布在整个系统中。这个想法可以解释量子系统如何变成经典系统并获得有限的温度,或者在黑洞中,物质落入的信息是如何被抹去的。我们探测了相空间中双稳态点附近的多粒子系统的指数扰乱,并将其用于纠缠增强计量。时间反转协议用于观察计量增益和不按时间顺序的相关器同时呈指数增长,从而通过实验验证了量子计量和量子信息扰乱之间的关系。我们的结果表明,能够以指数速度快速产生纠缠的快速扰乱动力学对实际计量很有用,可产生超出标准量子极限 6.8(4) 分贝的增益。E
作为IC制造的最后一步,包装是封装芯片并提供最终表单I/O的互连的过程。对越来越高的I/O密度,缩小设备尺寸和较低成本的需求也适用于包装过程。为了实现这些目标,已经开发了各种技术,其中大多数是晶圆级包装(WLP)。与传统的包装过程不同,大多数I/O互连是在晶状体级别进行的,并使用重新分布层(RDL)进行。rdls是铜线和远处形成电气连接的层。取决于应用程序的市场,例如移动,内存或物联网(IoT),粉丝 - 外部晶圆级包装(FOWLP)提供了支持I/O密度要求和良好的RDL线/空间的最有希望的方法。此外,还开发了粉丝范围的面板级包装(FOPLP),以利用规模经济并优化底物利用率。在这项技术中,该过程中使用了矩形基板,而不是像晶圆那样的圆形底物。
我们研究了通过不确定的因果顺序增强的量子计量学,证明了在连续变量系统中估计两个平均位移乘积的二次优势。我们证明,没有任何以固定顺序使用位移的设置能够使均方根误差消失得比海森堡极限 1 =N 更快,其中 N 是影响平均值的位移数。与此形成鲜明对比的是,我们表明,以两种替代顺序的叠加探测位移的设置产生的均方根误差以超海森堡缩放 1 =N 2 消失,我们证明这是所有具有确定因果顺序的设置的叠加中最优的。我们的结果开启了以不确定顺序探测量子过程的新测量设置的研究,并提出了对正则对易关系的增强测试,并可能应用于量子引力。
1理论物理学,巴斯克大学(UPV/EHU),西班牙毕尔巴奥2多斯蒂亚国际物理中心(DIPC)(DIPC),西班牙圣塞巴斯蒂,西班牙3号,3 ikerbasque 3 Ikerbasque,Basque,Basque,Basque,Basque,Basque,Basque Science,Spain 4 Wigner研究中心4 Wigner研究中心
摘要:物流流程的数字化使实时数据交换促进了现代经济的驱动力以及运行供应链。近年来,数字化转型已加速,主要是由于行业4.0概念的发展。它也被视为支持组织和行业可持续发展的趋势。主要的研究挑战是确定与供应链数字化有关的当前研究方向。因此,本文旨在介绍有关供应链数字化的过去五年(2018-2022)的文献综述结果。该研究使用了Prisma方法(用于系统评价和荟萃分析的首选报告项目),并分析了127篇文章。在此基础上,我们提出了一个两级资格式框架,其中包括八个核心类别和16个子类别。这项工作的主要贡献如下:从全球角度提供了关于数字时代供应链的完整和最新(最后五年)文献综述,从全球角度来总结了整合框架中最新的最新技术状况;并提供了目前观察到的两个最重要的挑战的指示,这些挑战是相互关联的。第一个关键挑战是企业和供应链的数字化转型;第二个是可持续发展,重点是可持续发展目标;通过提供结构和清晰度来降低问题的复杂性(将类别和子类别识别为思维图);并确定将来我们将要解决的研究差距。根据审查,我们指出了三个识别的研究差距:缺乏研究数字化来建立供应链弹性的研究;没有研究评估技术和威胁对整合未来供应链的关系的负面影响的风险;而且缺乏研究人在现代物流系统中的作用变化的研究。
随着车削、磨削、铣削、钻孔、珩磨、激光切割或腐蚀等制造工艺的创新,对生产计量的需求不断增长。Mahr 的精密计量通过面向客户和应用的解决方案支持这些发展。从 100% 检查的自动测量解决方案到单独的统计测试,Mahr 可在生产现场提供正确的解决方案。这些解决方案提供面向预算的质量保证,创造了宝贵的竞争优势,因为质量和生产成本降低了。
发生化学、放射性或核事件后,决策者需要快速、可靠且可追溯的数据,以便做出保护公众和环境的关键决策。在急救人员进入受灾建筑物并开始净化之前,必须建立对空气中化学或放射性污染物浓度和污染源的远程控制初步测量。在事故条件下获取这些数据对于监测人员来说可能很复杂且危险。因此,需要开发新型、无人和自主的监测设备以及确保数据准确性的基础测量基础设施,以协助事件决策者。应预计与工业合作伙伴、监管机构和标准化机构直接合作,以促进所开发技术的采用。关键词
随着车削、磨削、铣削、钻孔、珩磨、激光切割或腐蚀等制造工艺的创新,对生产计量的需求不断增长。Mahr 的精密计量通过面向客户和应用的解决方案支持这些发展。从 100% 检查的自动测量解决方案到单独的统计测试,Mahr 可在生产现场提供正确的解决方案。这些解决方案提供面向预算的质量保证,创造了宝贵的竞争优势,因为质量和生产成本降低了。
2019 年是计量学的重要一年。国际单位制于当年 5 月 20 日世界计量日进行了修订 [1]。2020 年会带来什么?在本文中,我们讨论了 2020 年值得关注的五项有希望的进展。首先,我们描述使用电磁波测量体积和气体压力。这些测量依赖于真空中光速的固定值 c 0 。然后我们转向普朗克常数 h 。可以从 h 获得质量和力的 SI 可追溯测量值。自从定义从千克国际原型的质量变为普朗克常数的值以来,质量计量学正在取得有趣的发展。将基本电荷 e 添加到 h 中,可以通过量子霍尔效应进行电阻和阻抗测量。自 2004 年发现石墨烯以来,这一直是一个非常有趣的领域。最后一节解释了如何使用电阻器上的噪声来测量热力学温度。正如将要展示的,温度可以与玻尔兹曼常数 k B 和普朗克常数的商相关联。虽然很难与去年计量学的兴奋相媲美,但我们相信,2020 年基础计量学将迎来有趣而令人兴奋的发展。
传感器网络正在成为许多应用的标准方法,从能源、水、天然气和热消耗(法定计量)等受监管领域到工业 4.0 的低成本物联网 (IoT)(工业计量),甚至多传感器二次实现(基础计量),以及医疗保健、化学和制药行业等其他领域。本主题领域的研究工作侧重于将信息理论、通信理论和数据科学等各个学科的现有研究联系起来,以解决此类传感器网络的计量问题。大多数计量服务的底层方法必须从根本上进行修改,以适应这些新的测量传感器网络,允许异常检测、状态监测、状态预测、自动确定测量数据质量等新功能。