• 什么是机器学习?• 传统编程与机器学习的区别 • 机器学习与人工智能的关系 • 机器学习的应用 • 机器为什么要学习?为什么不首先设计出按预期执行的机器?• 机器学习的类型(监督、无监督、半监督和强化学习) • 具有一个变量的线性回归 • 假设表示、假设空间 • 学习需要偏差 • 训练示例的概念 • 损失函数的概念,• 训练方法:机器学习算法可能用来训练模型的迭代试错过程,迭代训练方法的缺点,均方误差 (MSE),梯度下降算法。学习率对减少损失的影响,特征缩放的重要性(最小-最大规范化)。
摘要:到第二次世界大战中期,皇家空军采用了一种极其复杂的训练流程,在许多方面,它为当今现代空军训练机组人员提供了全球模式。这一流程并非一夜之间发展起来的,而是源于第一次世界大战期间开发的训练方法。尽管许多作者谴责了这些早期的训练方法,但必须记住,训练是与战术的演变、飞机性能的快速提高以及对航空学和空中力量应用的普遍理解同步发展的。与航空业本身一样,第一次世界大战期间的训练发展迅速,并出现了新的创新发展,例如建立正规的训练结构、专门设计的训练飞机以及使用海外训练地点来应对恶劣天气和国内机场不足的问题。也许更重要的是,第一次世界大战的经验表明,培养满足工业化战争要求的机组人员需要大量资源和专注。很明显,“训练管道”是一个动态概念,需要大量资源才能确保其成功运作。
神经辐射场(NERF)。•通过文本提示引入了一种针对阿凡达自定义的新文本驱动的模型训练方法。•开发了一种基于Web的应用程序,用于生成个性化的3D化身和风格化的肖像。•在工程技术机构香港
KEIKI FIT 计划以有趣的方式提供全面的运动表现训练方法。该计划将通过训练和游戏,专注于核心发展、平衡和正确的跑步机制。学习提高加速度、线性速度,培养品格、体育精神和正直
摘要。本文提出了一种基于对抗学习的脑肿瘤分割任务训练方法。在这个概念中,3D 分割网络从对偶对抗学习方法中学习。为了增强分割预测的泛化能力并使分割网络具有鲁棒性,我们遵循虚拟对抗训练方法,通过在原始患者数据上添加一些噪声来生成更多的对抗性示例。通过加入一个充当定量主观裁判的评论家,分割网络从与分割结果相关的不确定性信息中学习。我们在 RSNA-ASNR-MICCAI BraTS 2021 数据集上对网络架构进行了训练和评估。我们在在线验证数据集上的表现如下:Dice 相似度得分分别为 81.38%、90.77% 和 85.39%;增强肿瘤、整个肿瘤和肿瘤核心的 HausdorffiDistance (95%) 分别为 21.83 毫米、5.37 毫米、8.56 毫米。同样,我们的方法在最终测试数据集上实现了 84.55%、90.46% 和 85.30% 的 Dice 相似度得分,以及 13.48 毫米、6.32 毫米和 16.98 毫米的 HausdorffiDistance (95%)。总体而言,我们提出的方法在每个肿瘤子区域的分割精度方面都取得了更好的表现。我们的代码实现是公开的。
我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
我们介绍了一种新型的持续训练方法,即M elt(在E RIA L S-WARE继续前降雨中),该方法专门设计用于有效地适应材料科学的预训练的语言模型(PLM)。与以前仅着眼于构建领域特异性语料库的适应策略不同,鉴于材料科学语料库具有与其他领域不同的特征,因此全面考虑了语料库和培训策略。为此,我们首先通过构建语义图来从科学语料库中构建一个综合的材料知识库。杠杆作用,我们将课程整合到适应过程中,该过程始于熟悉和广义的概念,并逐渐朝着更加特殊的术语迈进。我们进行了各种基准测试的广泛实验,以验证M ELT的效率和一般性。一项综合评估令人信服地支持M ELT的强度,与现有的持续预训练方法相比,表现出了卓越的表现。对MELT的深入分析还表明,与现有的适应方法相比,MELT可以有效地代表材料实体,从而高出了其在广泛的材料科学1中的广泛适用性。
Ahmed Kareem Lateef博士抽象篮球运动员的垂直跳跃涉及各种方法,包括定向训练方法,该方法的重点是短螺旋周期(SSC)和肌肉主轴反应。这项研究旨在确定高素质和其他训练对篮球运动员腿部肌肉爆炸能力的影响。此信息对于教练修改其培训计划以提高垂直跳跃性能并在其团队中取得成功非常有用。这项研究为教练在计划年度培训计划中计划课程的教练提供了宝贵的见解,因为垂直跳跃会影响其技术绩效。关键字:篮球运动员,陈级集中,交接技能介绍以开发篮球运动员的垂直跳跃,有几种方法,包括定向训练方法,这是依赖其在三个阶段操作的方法之一:(固结,伸长,伸长和缩短和缩短),换句话说,中心和偏心contract。定向力学取决于短螺丝周期(SSC)。通过使用对势能的肌肉纺锤体反应,在运动的偏心肌肉作用中出现拉伸,从而在肌肉的连续弹性成分(SSC)中产生张力和强烈而快速的能量存储。肌肉的连续成分类似于环,(指导)被定义为使肌肉能够达到的练习。力量及其训练对于发展一般球员的身体能力,尤其是尤其是重要的训练。它的特征是强度和速度。在尽可能短的时间内达到最大长度(力速能力称为力),许多篮球运动员在得分技巧,尤其是跳高得分方面面临着弱点,这被认为是确定重要比赛表现的重要因素之一。因此,有必要采用最有效地发展肌肉力量的现代训练方法,并且根据篮球比赛的技能表现,这项工作将决定腿部肌肉的爆炸能力受到这组玩家的手工技能的爆炸性和其他训练的影响。这项工作将在篮球运动员的物理准备领域具有实际应用。从实际的角度来看,此信息对于教练修改其特定培训计划以提高垂直跳跃性能并在团队中取得成功很重要。很明显,篮球运动员的垂直跳跃会影响他们的技术表现。我们的研究中提供的信息可以为教练在计划年度培训计划中规划高级课程方面具有重要优势。研究问题的物理准备在篮球运动中占据了重要地位。但是,这项运动中最有效的训练方法仍有待证明。篮球中最重要的特征之一是垂直跳跃。因此,我们认为研究面向钢化值的训练对腿部爆炸能力的发展以及在年轻篮球运动员中跳跃得分很重要。研究人员还试图回答以下一些问题。
摘要:将深度学习方法应用于脑电图 (EEG) 数据以进行认知状态评估,与以前的建模方法相比取得了进步。然而,使用这些技术进行跨参与者认知工作量建模的研究代表性不足。我们研究非刺激锁定任务环境中的跨参与者状态估计问题,其中使用训练模型对训练集中未出现的新参与者进行工作量估计。使用来自多属性任务电池 (MATB) 环境中的实验数据,在计算效率、模型准确性、方差和时间特异性的权衡空间中评估了各种深度神经网络模型,得出三个重要贡献:(1) 在大多数序列长度下,单独训练的模型集合的性能在统计上与组训练方法没有区别。与组训练方法相比,这些集成训练所需的计算成本仅为其一小部分,并且能够更简单地更新模型。(2) 虽然增加时间序列长度可以提高平均准确度,但不足以克服个体脑电图数据之间的分布差异,因为它会导致跨参与者方差在统计上显着增加。(3) 与所有其他评估的网络相比,使用多路径子网络和双向残差循环层的新型卷积循环模型导致预测准确度在统计上显着增加,并降低跨参与者方差。
基于此项目,我们开展了一项练习,为包含机器学习 (ML) 组件的系统制定了一套临时要求。我们确定了几个关键考虑因素,包括:• 确定 ML 组件的明确和稳健要求(在目标系统的背景下)• 数据集管理和数据集规范的重要性• 适当选择模型架构、训练方法和最终模型选择的重要性• 测试、评估、验证和确认的重要性• 持续监控的重要性,以确认系统继续满足其性能目标