摘要:集水区的土地使用/土地覆盖(LULC)的分析是保护淡水资源的第一个措施。流域中的LULC信息已在自然科学领域中广受欢迎,因为它可以帮助水资源管理者和环境卫生专家根据可用的定量内形式制定自然保护策略。因此,遥感是解决集水层面与环境相关问题的问题。In this study, the performance of four machine learning algorithms (MLAs), such as Random Forests (RF), Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Naïve Bayes (NB) was investigated to classify the catchment into nine rele-vant classes of the undulating watershed landscape using Landsat 8 Operational Land Imager (L8-OLI) imagery.对MLA的评估是基于对分析师的目光检查和常用的评估指标,例如用户的准确性(UA),生产者的准确性(PA),整体准确性(OA)和KAPPA系数。MLA产生了良好的结果,其中RF(OA = 97.02%,Kappa = 0.96),SVM(OA = 89.74%,Kappa = 0.88),Ann(OA = 87%,Kappa = 0.86)和NB(OA = 68.64 kappa = 68.64 kappa = 0.58)。结果表明,RF模型在SVM和ANN上具有较小的边缘的外观性能。NB产生令人满意的结果,这可能主要受到其对有限训练样本的敏感性的影响。相比之下,RF的稳健型号可能是由于能够用有限的火车数据对高维数据进行分类的能力。关键字:翁根尼河流域;机器学习; lulc; Landsat 8;遥感
摘要:计算机视觉是医学图像分析中的强大工具,支持对眼部疾病的早期检测和分类。糖尿病性视网膜病(DR)是继发于糖尿病的严重眼科疾病,伴随着危险性疾病的几个早期迹象,例如微型神经疗法(MAS),出血(Hemos)和渗出液(EXS),这些症状已被广泛研究并靶向由计算机视觉模型检测的对象。在这项工作中,我们测试了最先进的Yolov8和Yolov9 Architectures DR Feldus功能分割的表演,而无需编码经验或编程背景。我们从公共Messidor数据库中获取了一百个DR图像,并手动标记并准备了它们以进行像素分割,并测试了不同模型变体的检测能力。我们通过数据增强增加了训练样本的多样性,包括平铺,翻转和旋转眼底图像。在检测诸如MA,Hemo和ex之类的DR病变时,提出的方法达到了可接受的平均平均精度(MAP),以及眼睛后极的标志,例如视盘。我们将我们的结果与涉及不同神经网络的文献中的相关作品进行了比较。我们的结果是有希望的,但尚未准备好进入临床实践。必须进行准确的病变检测,以确保早期和正确的诊断。未来的工作将进一步研究病变检测,尤其是MA分割,并通过改进的提取技术,图像预处理和标准化数据集进行研究。
在预训练和微调期间,大型语言模型 (LLM) 都会在质量参差不齐的数万亿个文本标记上进行训练。这两个训练阶段通常都涉及启发式地滤除“低质量”或嘈杂的训练样本,但对于噪声的类型或强度如何影响下游性能,人们知之甚少。在这项工作中,我们研究了思路链 (CoT) 中的噪声如何影响算法可解任务的高度受控设置中的任务性能。首先,我们开发了跟踪整数 (TInt) 框架来为整数列表上的任何算术函数生成高度可定制的带噪声执行跟踪。然后,我们定义了两种类型的噪声:静态噪声,一种在计算 CoT 跟踪后应用的局部形式的噪声,以及动态噪声,一种在计算跟踪时传播错误的全局形式的噪声。然后,我们评估了在不同数据集污染程度和强度的噪声数据集上,提示和微调预训练模型的测试性能。我们发现,微调模型对高水平静态噪声具有极强的鲁棒性,但在较低水平的动态噪声下则表现得更加糟糕。相比之下,少样本提示模型似乎对静态噪声也更加敏感。最后,我们讨论了我们的研究结果如何影响噪声过滤的最佳实践,并特别强调了去除包含具有全局误差的破坏性动态噪声的样本的重要性。
摘要 — 迄今为止,已有 75 个国家报告了猴痘疫情,该疫情正在全球迅速蔓延。猴痘的临床特征与天花相似,而猴痘的皮肤病变和皮疹通常与其他痘相似,例如水痘和牛痘。这些相似之处使得医疗保健专业人员通过检查病变和皮疹的外观来检测猴痘具有挑战性。此外,由于在当前疫情爆发之前猴痘很罕见,医疗保健专业人员之间存在知识差距。受人工智能 (AI) 在 COVID-19 检测中取得成功的推动,科学界对使用人工智能从数字皮肤图像中检测猴痘表现出了越来越浓厚的兴趣。然而,缺乏猴痘皮肤图像数据一直是使用人工智能进行猴痘检测的瓶颈。因此,最近,我们推出了 2022 年猴痘皮肤图像数据集,这是迄今为止同类数据集中规模最大的数据集。此外,在本文中,我们利用该数据集研究了在皮肤图像上使用最先进的 AI 深度模型进行猴痘检测的可行性。我们的研究发现,深度 AI 模型在从数字皮肤图像中检测猴痘方面具有巨大潜力(准确率为 85%)。然而,要实现更强大的检测能力,需要更大的训练样本来训练这些深度模型。
最近对量子网络(QNN)以及它们在不同领域的应用都有很大的兴趣。QNNS的当前解决方案对它们的可伸缩性提出了显着的挑剔,从而确保了量子力学的后期满足,并且可以在物理上实现净作品。QNNS的指数状态空间对训练过程的可扩展性构成了挑战。禁止原理禁止制作多个训练样本的副本,并且测量值假设导致了非确定性损失函数。因此,尚不清楚依赖于每个样本的几个副本进行训练QNN的几个副本的现有方法的物理可靠性和效率尚不清楚。本文提出了一个QNN的新模型,依赖于量子量度感知器(QPS)传递功能的带限制的傅立叶范围来设计可扩展的训练程序。通过随机量子随机差下降技术增强了这种训练过程,从而消除了对样品复制的需求。我们表明,即使在由于量子测量引起的非确定性的情况下,这种训练过程即使在存在非确定性的情况下也会收敛到真正的最小值。我们的解决方案具有许多重要的好处:(i)使用具有集中傅立叶功率谱的QPS,我们表明可以使QNN的训练程序可扩展; (ii)它消除了重新采样的需求,从而与无禁止的规则保持一致; (iii)增强了整体培训过程的数据效率,因为每个数据样本都是每个时期的一次。我们为我们的模型和方法的可伸缩性,准确性和数据效率提供了详细的理论基础。我们还通过一系列数值实验来验证方法的实用性。
大流行,我们可以通过投资防范措施来减少其影响。在这项研究中,我们提出了 RapiD AI:一个指导使用预训练神经网络模型作为大流行防范工具的框架,以使医疗保健系统在未来的大流行期间具有弹性并有效使用机器学习。RapiD AI 框架使我们能够使用大流行前几周收集的数据构建高性能机器学习模型,并提供一种方法来使模型适应当地人群和医疗保健需求。其动机是使医疗保健系统能够克服数据限制,这些限制阻碍了在新型疾病背景下开发有效的机器学习。我们以数字方式重现了 COVID-19 大流行的前 20 周,并通过领域自适应和归纳迁移实验演示了 RapiD AI 框架。我们 (i) 在代表英国牛津一般住院患者群体的大型电子健康记录数据集上对两个神经网络模型 (深度神经网络和 TabNet) 进行预训练,(ii) 使用疫情前几周的数据进行微调,以及 (iii) 通过在 COVID-19 患者的保留测试数据集上测试模型的性能来模拟本地部署。与仅在 COVID-19 数据上训练的 XGBoost 基准模型相比,我们的方法已显示平均相对/绝对增益为 4.92/4.21% AUC。此外,我们展示了通过聚类识别最有用的历史预训练样本的能力,以及通过归纳迁移扩展已部署模型的任务的能力,以满足无需访问大型历史预训练数据集的医疗保健系统的新兴需求。
近年来,人们对量子神经网络 (QNN) 及其在不同领域的应用产生了浓厚的兴趣。当前的 QNN 解决方案在其可扩展性方面提出了重大挑战,确保满足量子力学的假设并且网络在物理上可实现。QNN 的指数状态空间对训练程序的可扩展性提出了挑战。不可克隆原则禁止制作训练样本的多个副本,而测量假设会导致非确定性损失函数。因此,依赖于对每个样本的多个副本进行重复测量来训练 QNN 的现有方法的物理可实现性和效率尚不清楚。本文提出了一种新的 QNN 模型,该模型依赖于量子感知器 (QP) 传递函数的带限傅里叶展开来设计可扩展的训练程序。该训练程序通过随机量子随机梯度下降技术得到增强,从而无需复制样本。我们表明,即使存在由于量子测量而产生的不确定性,该训练程序也会收敛到期望的真实最小值。我们的解决方案有许多重要的好处:(i)使用具有集中傅里叶功率谱的 QP,我们表明 QNN 的训练程序可以可扩展;(ii)它消除了重新采样的需要,从而与无克隆规则保持一致;(iii)由于每个数据样本每个时期处理一次,因此提高了整个训练过程的数据效率。我们为我们的模型和方法的可扩展性、准确性和数据效率提供了详细的理论基础。我们还通过一系列数值实验验证了我们方法的实用性。
摘要。预见到大脑进化是一个复杂的高度互联的系统,广泛地以图形建模,对于映射健康和疾病中不同解剖感兴趣区域 (ROI) 之间的动态相互作用至关重要。有趣的是,脑图进化模型在文献中几乎没有。在这里,我们设计了一个对抗性大脑网络规范化器,将每个大脑网络表示为固定中心的群体驱动连接模板的变换。这种相对于固定参考的图形规范化为在基线时间点可靠地识别与测试样本最相似的训练样本(即大脑图)铺平了道路。然后,测试进化轨迹将由选定的训练图及其相应的进化轨迹跨越。我们的预测框架基于几何深度学习,它可以自然地在图上运行并很好地保留其拓扑属性。具体来说,我们提出了第一个基于图的生成对抗网络(gGAN),它不仅学习如何根据固定的连接大脑模板(CBT)(即,有选择地捕获大脑群体中最常见特征的大脑模板)对大脑图进行标准化,而且还学习大脑图的高阶表示,也称为嵌入。我们使用这些嵌入来计算训练和测试对象之间的相似性,这使我们能够在基线时间点选择最接近的训练对象来预测测试大脑图随时间的演变。针对几种比较方法的一系列基准测试表明,我们提出的方法使用单个基线时间点实现了最低的脑疾病演变预测误差。我们的 gGAN 代码可在 http://github.com/basiralab/gGAN 获得。
从神经活动中解码听觉刺激可以实现神经假体和与大脑的直接通信。最近的一些研究表明,使用深度学习模型可以成功解码颅内记录中的语音。然而,训练数据的稀缺导致语音重建质量低下,从而阻碍了完整的脑机接口 (BCI) 应用。在这项工作中,我们提出了一种迁移学习方法,使用预先训练的 GAN 来解开表示层和生成层以进行解码。我们首先使用大量自然语音数据预训练一个生成器,以从表示空间生成频谱图。使用包含刺激语音和相应 ECoG 信号的少量配对数据,我们然后将其传输到更大的网络中,并在之前附加一个编码器,将神经信号映射到表示空间。为了进一步提高网络泛化能力,我们在传输阶段在潜在表示上引入了一个高斯先验分布正则化器。通过对每个测试对象最多 150 个训练样本,我们实现了最先进的解码性能。通过可视化嵌入在编码器中的注意力掩码,我们观察到的大脑动态与之前研究颞上回 (STG)、中央前回 (运动) 和额下回 (IFG) 动态的研究结果一致。我们的研究结果表明,使用深度学习网络的重建精度很高,并且有可能阐明认知任务期间不同大脑区域之间的相互作用。
大脑的生物年龄与其实际年龄 ( CA ) 不同,可用作神经/认知疾病过程的生物标志物和死亡率的预测指标。大脑年龄 ( BA ) 通常使用机器学习 (ML) 从磁共振图像 (MRI) 中估算出来,而这种机器学习很少能表明大脑区域特征对 BA 的贡献。利用 3 418 名健康对照 (HC) 的总体训练样本,我们描述了一个岭回归模型,该模型量化了每个区域对 BA 的贡献。在对 651 名 HC 的独立样本进行模型测试后,我们计算每个区域脑容量的偏决定系数 ¯ R 2 p 以量化其对 BA 的贡献。还使用实际年龄和生物年龄之间的相关性 r、BA 估计值的平均绝对误差 ( MAE ) 和均方误差 ( MSE ) 来评估模型性能。在训练数据上,r = 0.92 ,MSE = 70.94 年,MAE = 6.57 年,且¯ R 2 = 0.81 ;在测试数据上,r = 0.90 ,MSE = 81.96 年,MAE = 7.00 年,且¯ R 2 = 0.79 。体积对 BA 贡献最大的区域是伏隔核(¯ R 2 p = 7.27 %)、颞下回(¯ R 2 p = 4.03 %)、丘脑(¯ R 2 p = 3.61 %)、脑干(¯ R 2 p = 3.29 %)、后外侧沟(¯ R 2 p = 3.22 %)、尾状核(¯ R 2 p = 3.05 %)、眶回(¯ R 2 p = 2.96 %)和中央前回(¯ R 2 p = 2.80 %)。尽管我们的岭回归表现不及最先进的 ML 方法,但它确定了每个大脑结构对整体 BA 的重要性和相对贡献。除了可解释性和准机械见解之外,我们的模型还可用于验证未来 BA 估计的 ML 方法。