如此严重的化学取代会扰乱自发极化的幅度和方向,以及 BiFeO 3 的结构和畴结构。[10–12] 因此,与纯 BiFeO 3 相比,La 取代的 BiFeO 3 中的畴结构高度随机化。此外,晶体对称性从菱面体变为单晶。[10,11,13] 规则 BiFeO 3 条纹畴结构的丧失可能会影响与应用相关的特性,例如前述磁电开关过程。由于任何铁性材料的功能都受其畴操纵的支配,因此对集成到电容器架构中的 La 取代 BiFeO 3 进行非侵入性操作研究对于了解取代诱导的畴结构的影响至关重要
摘要 通过研究机器学习系统中的分类政治,本文说明了为什么图像的自动解释本质上是一个社会和政治项目。我们首先要问图像在计算机视觉系统中起什么作用,以及计算机可以“识别”图像的说法是什么意思?接下来,我们研究将图像引入计算机系统的方法,并研究分类法如何对决定系统如何解释世界的基础概念进行排序。然后我们转向标签问题:人类如何告诉计算机哪些词与给定图像相关。人工智能系统使用这些标签对人类进行分类的方式有什么利害关系,包括按种族、性别、情绪、能力、性取向和个性进行分类?最后,我们转向计算机视觉在我们的社会中服务的目的——为计算机提供这些能力的判断、选择和后果。从方法论上讲,我们称之为数据集考古学:研究训练图像和标签的物质层,编目构建分类法的原则和价值观,并分析这些分类法如何为人工智能系统创建可理解性参数。通过这样做,我们可以批判性地参与系统的潜在政治和价值观,并分析哪些规范的生活模式被假定、支持和再现。
气道分割对于肺部疾病研究很重要,但需要训练有素的专家花费大量时间。我们使用公开可用的软件来改进从人工智能 (AI) 工具获得的气道分割,并重新训练该工具以获得更好的性能。使用之前在丹麦肺癌筛查试验和 Erasmus-MC Sophia 数据集上训练过的 3D-Unet AI 工具从低剂量胸部计算机断层扫描中获得 15 个初始气道分割。在 3D Slicer 中手动校正分割。校正后的气道分割用于重新训练 3D-Unet。自动获取气道测量值,包括从分割中每代计数、气道长度和管腔直径。每次扫描校正分割需要 2 – 4 小时。与初始分割相比,手动校正的分割具有更多分支(p < 0.001)、更长的气道(p < 0.001)和更小的管腔直径(p = 0.004)。与初始分割相比,重新训练的 3D-Unets 的分割趋向于更多分支和更长的气道。从第 6 代开始,气道的变化最大。手动校正可显着改善分割,并且可能是一种有用且省时的方法,可以提高特定医院或研究数据集上的 AI 工具性能。