(b),6.000 nm(c),8.900 nm(d)和9.300 nm(e),其中颜色表示不同的局部晶体结构:蓝色-BCC,绿色-FCC,RED-HCP和White-Inninnown; (f)在1860 PS和d = 9.300 nm的纳米线内的应变分布,其中原子是通过其局部剪切应变颜色的。
1884 年华盛顿纪念碑竣工时,一个六磅重的铝盖被放置在纪念碑顶部,当时铝非常稀有,被认为是一种贵金属和新奇事物。然而,在不到 100 年的时间里,铝就成为继铁之后使用最广泛的金属。铝的迅速崛起是其金属及其合金的优良品质以及经济优势的结果。在自然界中,铝与其他元素(主要是氧和硅)紧密结合,存在于靠近地球表面的红色粘土状铝土矿中。在地壳中自然存在的 92 种元素中,铝是第三大元素,含量为 8%,仅次于氧(47%)和硅(28%)。然而,由于从天然状态中提取纯铝非常困难,直到 1807 年,英国的汉弗莱·戴维爵士才将其鉴定出来,并以铝矾石 (lumine) 命名,这是罗马人认为粘土中存在的金属的名称。戴维成功地生产出少量相对纯净的钾,但未能分离出铝。1825 年,丹麦的汉斯·奥斯特 (Hans Oersted) 最终通过加热钾汞合金和氯化铝生产出一小块铝。
摘要 :随着智能手机、电脑和互联网的广泛融合,信息获取和处理发生了重大变化。本文探讨了积极和消极影响,承认通过轻松访问庞大的数据库和外部记忆辅助工具可以扩展认知能力,同时也解决了对记忆巩固减弱和依赖浅层编码策略的担忧。该研究考察了记忆研究的跨学科领域,还强调了心理学、神经科学、社会学和信息科学学者为理解数字技术对记忆的影响而做出的合作努力,并强调了记忆研究的挑战和未来方向,包括数字健忘症、信息过载和隐私问题等问题。总的来说,本文强调需要了解人类记忆与数字工具之间的关系,从而制定策略来增强记忆,抵消潜在的不利影响,并促进在记忆相关任务中平衡利用数字资源。
本文提出了对记忆的全新理解,这也将改变有关记忆增强的争论的坐标。我们不应该把记忆看作一个仓库,而应该从叙事的角度来思考记忆。这种观点让我们深入了解了我们构建记忆的实际过程——即通过构建有意义的摘要,而不是添加离散元素。我认为,这种关于记忆的新思维方式将使我们现有的或在不久的将来拥有的大多数增强记忆的技术在伦理上不再那么令人担忧。主要思想是,(生物)记忆与记忆增强以通常的方式以创造性和重新阐述的方式相互作用。最后,我将举几个案例来说明前面的观点。
研究了Sn-Bi-Cu、Sn-Bi-Ni、Sn-Bi-Zn、Sn-Bi-Sb合金的超塑性变形行为。本研究旨在测定Sn-Bi二元合金的应变速率敏感性指数m。在不同横梁速度下进行25、40、60和80 ℃拉伸试验,测定指数m。结果表明,指数m随Bi浓度和试验温度的增加而增大。在60和80 ℃时,Sn-Bi合金的指数m均超过了3.0,这是超塑性变形行为的阈值。研究发现,Sn-Bi共晶组织对亚共晶Sn-Bi合金的超塑性变形有显著的影响。
VDM ® 合金 602 CA 尤其具有抗氧化性能,在高达 1,200 °C (2,192 °F) 的整个应用范围内,其抗氧化性能均优于 VDM ® 合金 601。即使在循环加热和冷却等极端条件下,VDM ® 合金 602 CA 也能保持此性能,这是由紧密粘附的氧化铝层引起的,该氧化铝层非常耐崩裂。高温氧化试验表明,与其他高温材料相比,该材料在循环应力下的质量损失最低。由于含有铬和铝,VDM ® 合金 602 CA 在高温下氧化含硫气氛中也具有很强的耐受性。VDM ® 合金 602 CA 可进一步提高 VDM ® 合金 601 良好的抗渗碳性能。材料的抗金属尘化性能也是如此。