硅(SI)光子学是一种颠覆整合光子学的快速轨道上的破坏性技术。其必不可少的分支是异质的SI整合,也从15年前的科学项目演变为当今不断增长的业务和引人注目的研究领域。我们专注于III-V化合物半导体的范围,该范围异质地集成在SI底物上。讨论了基于第一代创新的大量产生的综合发电机的商业成功。然后,我们在组件和平台级别上回顾了许多技术突破。除了众多新的设备性能记录外,我们的重点是背后的基本原理以及材料和设备集成的具体示例的设计原理。最后,我们提供了有关许多现有和新兴应用程序需求不断增长的发展趋势的观点。
电泳药物输送装置能够以极高的时间和空间精度输送药物。该技术已成为一种有前途的平台,可用于治疗从神经性疼痛到癫痫等各种病症。随着应用范围的不断扩大,迫切需要了解底层物理原理并估算材料和设备参数以获得最佳性能。本文对电泳药物输送装置进行了计算建模。研究了三个关键性能指标,即药物输送量、泵送效率和开/关比,它们与装置中的初始药物浓度和离子交换膜中的固定电荷浓度的关系。研究结果为未来的材料和设备设计提供了指导,旨在根据疾病特定需求定制设备性能。
NUSTL 负责管理应急响应人员系统评估和验证 (SAVER) 计划,该计划提供有关市售设备的信息,以协助响应组织进行设备选择和采购。SAVER 知识产品提供有关 DHS 授权设备清单 (AEL) 所列类别的设备的信息,主要关注响应者社区的两个主要问题:“有哪些设备可用?”和“设备性能如何?”SAVER 计划与响应者合作,对市售应急响应设备进行客观、与实践者相关、以操作为导向的评估和验证。拥有合适的工具可以为响应者提供更安全的工作环境,并为他们服务的人提供更安全的社区。
SAP 智能资产管理解决方案通过使用数字孪生、物联网、机器学习和高级分析等尖端技术来扩展和增强核心资产管理流程,从而实现智能企业的愿景。SAP 智能资产管理解决方案支持整个资产生命周期的成本控制、与 SAP 智能企业产品组合的本地集成以及决策支持,以提高设备性能并降低风险。您可以改进流程和预测结果、跨网络协作并提供差异化服务,同时创造新的收入来源并开发新的方式来竞争和颠覆您的行业。我们期待继续合作并重视您的任何反馈。如需任何您可能需要的信息,请随时与我们联系。
在本文中,我们提出了一种处理光子频域中编码的高维量子信息的新方法。与以前基于非线性光学过程的方法相比,该方法不需要主动控制光子能量。利用无源光子电路和时间分辨检测可以实现任意的幺正变换和投影测量。给出了任意尺寸量子频率梳的系统电路设计。推导出了验证量子频率相关性的标准。通过考虑探测器有限响应时间的实际情况,我们表明,在当前设备性能下可以轻松实现高保真操作。这项工作将为基于高维频率编码的可扩展和高保真量子信息处理铺平道路。
摘要 目的。检测神经信号的方法涉及侵入性、时空分辨率和记录的神经元或脑区数量之间的折衷。基于电极的探针提供了出色的响应,但通常需要经颅布线并捕获有限神经元群的活动。脑电图和脑磁图等非侵入性方法分别提供场电位或生物磁信号的快速读数,但具有空间限制,禁止从单个神经元进行记录。增强神经源性磁场的细胞大小的装置可用作基于磁的模式的原位传感器,并提高检测跨多个脑区不同信号的能力。方法。我们设计并建模了一种能够与单个神经元形成紧密电磁连接的装置,从而通过驱动电流通过纳米制造的电感元件将细胞电位的变化转化为磁场扰动。主要结果。我们使用从体外膜片钳神经元获取的信号和几何形状进行真实的有限元模拟,对设备性能进行了详细的量化,并展示了该设备产生可通过现有模式读取的磁信号的能力。我们将设备的磁输出与内在神经元磁场 (NMF) 进行了比较,并表明单个神经元的传导磁场强度在峰值时高出三倍多(1.62 nT vs 0.51 nT)。重要的是,我们报告了典型体素 (40 × 40 × 10 µ m) 内传导磁场输出的空间增强,比内在 NMF 强度高出 250 倍以上(0.64 nT vs 2.5 pT)。我们使用此框架根据纳米制造约束和材料选择对设备性能进行优化。意义。我们的量化为合成和应用用于检测大脑活动的电磁传感器奠定了基础,可以作为在单细胞水平上量化记录设备的通用方法。
3. 国家电网为确保氢气安全做了哪些工作?国家电网与东北天然气协会的 NYSEARCH、GTI Energy、运营技术开发 (OTD) 和利用技术开发 (UTD) 等合作伙伴以及其他联合行业合作机构合作,支持了近 40 个研究项目,涵盖人员和客户安全、管道完整性、材料兼容性、气体混合、计量和测量技术、泄漏检测和量化、客户设备性能和其他最终用途应用等主题。这些研究以及世界各地其他实体进行和发表的许多其他科学研究让我们深入了解了氢气在我们的网络中的表现,以及我们如何以对客户、员工和设备安全的方式实施氢气。本文档的下一节将探讨具体的氢气安全主题。
• 按照《2020 年能源法》的规定,WPTO 在多年期计划 (MYPP) 中指出了“利用动态、低速和高密度波浪和洋流发电,同时在腐蚀性海洋环境中生存的基本挑战”。WPTO 还通过“支持设计、制造和验证多个相关规模的行业设计原型”,专注于“为服务不足的社区提供电力并增强沿海复原力”,具体包括“改进安全且经济高效的安装、电网集成、运行、监测、维护和退役方法”和“支持制定和采用设备性能和保险认证的国际标准”以及“利用国际海洋能源界和其他海上科学和工业部门的专业知识、技术、数据、方法和经验教训”。与这些既定目标相关的是:
• 为了通过应变诱导的 Stranski-Krastanov 过程自发形成外延 QD,QD 材料和势垒材料之间的晶格失配必须达到一定的最小值。 • 需要紧密排列的 QD,以便孤立 QD 中通常观察到的离散能级加宽以形成微带。还需要高密度的 QD 以实现充分的吸收。为了实现所需的高密度应变 QD,几乎肯定需要某种应变平衡的 QD 超晶格结构来防止形成晶格失配诱导的穿透位错。这些缺陷会导致高度的非辐射复合,从而降低设备性能。 • 还需要 QD 和势垒材料中的载流子寿命长,以实现有效的载流子提取。