一个部件只有按照要求的可靠性设计时才会可靠。基于可靠性的机械设计使用可靠性将部件的所有设计参数联系在一起,形成机械设计的极限状态函数。这种设计方法使用可靠性代替安全系数作为部件安全状态的量度。这种方法的目标是设计一个具有所需可靠性的机械部件,同时定量地指示部件的故障百分比。基于可靠性的机械设计由两本独立的书组成:第 1 卷:静态载荷下的部件,以及第 2 卷:循环载荷下的部件和具有所需可靠性的尺寸设计。本书首先简要讨论了工程设计过程和基本原理
抽象的发射车有效载荷整流罩必须满足各种学科的要求,从结构力学,热和声学到内部和外部流体动力学在截然不同的操作条件下。每个学科都有一组特定的约束,各种目标通常是冲突的。所提出的方法利用多学科分析和优化,同时通过改变影响多个学科的设计参数来最大程度地提高高级指标,例如质量和生命周期成本。从结构,热和空气动力学的角度评估满足要求的能力。此外,考虑到平整可重复使用的可能性以及探索不同的制造和翻新策略的可能性,还评估了生命周期成本。
为了准确回答这个问题,需要对机械工程中的人工智能进行冷静的分析。从原始设备、组件和结构的设计开始,人工智能以多种方式增强了设计过程。一个例子是使用生成设计来解决复杂的机械工程问题。生成设计是一个迭代过程,致力于在指定的约束内解决复杂的挑战。Autodesk Fusion 360 或 Grasshopper 3D 应用程序的用户必须尝试过生成设计。在这些用例中,运行模拟所需的必要设计参数完全由机械工程师定义。
由 RS 制定。检验/调查计划应确定货物围护系统整个使用寿命期间需要检验的区域,特别是在选择货物围护系统设计参数时假设的所有必要的运行中检验和维护。货物围护系统的设计、建造和配备应提供足够的途径进入检验/调查计划中规定的需要检验的区域。货物围护系统(包括所有相关内部设备)的设计和建造应确保操作、检验和维护期间的安全(参见 IGC 规则第 3.5 条)。
Isight 于十多年前在劳斯莱斯推出,目前已在整个公司内使用。该软件的拖放功能可用于创建模拟流程(劳斯莱斯内部称为“工作流”),让工程师能够链接并自动化特定设计流程中的所有步骤,从而同时集成多学科模拟(如空气动力学、应力、重量和成本)。可以自动执行使用 DOE 或蒙特卡罗方法或各种强大的优化技术(如遗传、基于梯度或确定性算法)的设计探索,然后将其链接回正在进行的工作流中。工作流中可以包含任意数量的设计参数和分析类型,并且可以通过材料权衡研究、公差审查和可制造性评估进一步优化设计。
电信设计参数,并将用于所有新的国防部系统和设备采购或对其的重大升级。MIL-STD-188 系列细分为 MIL-STD-188-100 系列,涵盖战术和长途通信的通用标准; MIL-STD-188-200 系列,仅涵盖战术通信的标准;以及 MIL-STD-188-300 系列,仅涵盖长途通信的标准。重点放在战术和长途通信通用标准的开发上(MIL-STD-188-100 系列)。MIL-STD-188 系列可能基于或参考美国国家标准协会 (ANSI) 标准、国际电信联盟 - 电信标准化部门 (ITU-T) 建议、国际标准化组织 (ISO) 标准、北大西洋公约组织 (NATO) 标准化协议 (STANAG) 和其他适用标准。
Isight 于十多年前在劳斯莱斯推出,目前已在整个公司内使用。该软件的拖放功能可用于创建模拟流程(劳斯莱斯内部称为“工作流”),让工程师能够链接并自动化特定设计流程中的所有步骤,从而同时集成多学科模拟(如空气动力学、应力、重量和成本)。可以自动执行使用 DOE 或蒙特卡罗方法或各种强大的优化技术(如遗传、基于梯度或确定性算法)的设计探索,然后将其链接回正在进行的工作流中。工作流中可以包含任意数量的设计参数和分析类型,并且可以通过材料权衡研究、公差审查和可制造性评估进一步优化设计。
然后进行退火。后者将注入剂量作为附加设计参数。首先,从 Pt 硅化物层引入铂的实验中,我们可以学到很多东西。这些知识对于校准基本机制的模型参数非常有用,因为它与注入后退火相比不太复杂,而注入后退火不可避免地会导致注入损伤以及高注入剂量下铂团块的形成。另一个有趣的过程是硅中铂的磷扩散吸杂 (PDG)。它可用于进一步定制铂分布和载流子寿命调整,从而进一步优化硅功率器件在软开关方面的性能。[1,2]
电池组的重量能量密度是用于尺寸全电动飞机的最重要但通常估计的设计参数之一。在将细胞水平推断到飞机水平的性能时,经常会损失对热,结构和操作安全边缘的适当会计。本文总结了更好地说明组装电池组时相关的罚款所需的相关工程和认证细节。细胞和包装能量密度之间的关系不是线性的,正如通常假定的那样。此外,关系因包装需求,细胞化学和体系结构而异。参数,高实现模型用于确定在一系列条件下的最佳电池组大小,以更好地量化技术缩放效果。
摘要本文提出的研究活动是在适用于复杂航空系统开发的并发工程的背景下进行的。主要目的是将飞机设计参数扩展到制造和供应链的参数,包括物流方面,质量管理,风险生产,资源和材料可用性。这肯定会使设计问题复杂化,这是由于扩大解决方案贸易空间的替代方案的扩大。但是,它为当今的全球市场提供了一个很好的机会来获得敏捷性,多样性和竞争优势。在此提议的新价值驱动方法的制定和实施为决策者提供了有利的好处,也是本文涉及的航空申请案例所强调的。