摘要。本文介绍了实验结果和范围0-5伏的电源的信息,该电源将进一步提供给转换器电路的电压。电源构建和电压转换器电路的主要目的是观察输入电压与产生的输出频率之间的关系,这在示波器屏幕上可观察到。用于设计电压到转换器电路的模拟很容易,它提供了有关设计电路的早期信息消耗的功率较少,因此具有广泛的应用。使用了555-Analog计时器(也称为振动器)。这是8个引脚IC的双线内包装(DIP)。通过使用300公斤电阻的电位计和值0.1UF的电容器来构建该项目。
摘要。SHA-3 被认为是最安全的标准哈希函数之一。它依赖于 Keccak-f[1 600] 置换,该置换对 1 600 位的内部状态进行操作,主要表示为 5 × 5 × 64 位矩阵。虽然现有实现通常以 32 位或 64 位的块顺序处理状态,但 Keccak-f[1 600] 置换可以通过并行化加速。本文首次通过 32 位和 64 位架构上的自定义向量扩展探索基于 RISC-V 的处理器中 Keccak-f[1 600] 并行化的全部潜力。我们分析了由五个不同步骤映射组成的 Keccak-f[1 600] 置换,并提出了十条自定义向量指令来加速计算。我们在 SystemVerilog 中描述的 SIMD 处理器中实现了这些扩展。我们将我们的设计性能与基于矢量化专用指令集处理器 (ASIP) 的现有架构进行了比较。我们表明,得益于我们精心选择的自定义矢量指令,我们的设计性能优于所有相关工作。
概述 SaberRD 是一种直观的集成环境,用于设计和分析电力电子系统和多领域物理系统。SaberRD 以成熟的 Saber® 仿真技术为核心,将易用性与处理当今复杂电力问题的能力相结合,使工程师能够探索设计性能、优化稳健性并确保系统可靠性,适用于广泛的发电、转换和配电应用。SaberRD 真正的多领域物理建模能力和无与伦比的分析能力为工程师提供了一个支持完整系统设计的虚拟原型平台。SaberRD 为普通用户和专家用户提供直观灵活的用户界面,可加速汽车、航空航天、国防和工业电力工程组织的设计。
系统设计自动化是使用数字电位器的关键因素。如今,我们拥有全球制造模式。在同一家工厂设计和制造系统已不再可能。通常,在一个国家设计的系统会在其他几个国家制造。这给沟通最佳性能的校准程序带来了问题。数字电位器在这些情况下成为关键。设计师现在可以在指定校准程序的同时将可测试性和自动校准功能融入设计中。此内置程序可在所有制造地点重复使用,并且只需更改软件即可在任何时间轻松升级所有地点。现在,随着新的低功耗 X9315 的加入,内置此自动化功能无需增加电源负载或损害电路设计性能。
摘要高级包装设计性能的目标是降低功率并更好地控制热量和电磁干扰。实现有效包装的材料包括使用黄金(AU),铜(CU)合金,金/银(AU/AG)镀金,焊料,低K环氧树脂和干燥膜聚合物,硅和聚酰亚胺。材料纯度验证和生产过程中的污染控制是确保包装中高收益率的先决条件,因为弄错了,这意味着扔掉多个芯片。本文描述了一个分析决策树,以指导方法论选择,审查污染故障排除方法和案例研究以解决过程问题。关键词分析技术,洁净室,污染,杂质,微电子软件包,故障排除
被动房屋建筑概念已广泛研究其性能,尤其是诸如能源消耗和热特性之类的方面。尽管如此,设计阶段仍然没有提供动态的热舒适预测过程,有助于研究设计性能。本研究的重点是根据自然通风计划在维持足够的气流中的有效性的基础上计算出英国居住的飞行员被动房屋中夏季条件的方法。该方法涉及EnergyPlus动态模拟,ANSYS计算流体动力学模拟和建筑环境热舒适工具的中心。结果表明,不同空速的人不满意的人群不满意的人群不满意的人群不满,而大多数飞速的水平不舒服。结果也分别显示热舒适参数的范围。这些发现可以通过采用集成软件组合来在设计阶段为热舒适状态提供全面的描述。
玻璃或碳纤维增强环氧复合材料。这些占涡轮机成本的很大一部分,但很少有数据可用于验证当前的安全系数或提出替代的更环保的材料。这项在欧盟 H2020 RealTide 项目内进行的研究旨在提供这些数据。首先,在试样规模上对静态和疲劳行为进行了详细调查,不仅包括当前使用的材料,还包括替代的可回收热塑性基质复合材料和天然纤维增强材料。在海水饱和之前和之后进行测试,以量化吸水后设计性能的变化。然后设计了第一个全尺寸 5 米长的复合材料叶片并进行了失效测试。建造了一个特定的测试框架,允许施加高达 75 吨的负载并模拟与服务负载相对应的施加力矩。施加了静态和循环载荷,并且广泛
David Franklin^ -问题:1.您用来预测辐照不锈钢设计性能的方程式之一包含辐照和未辐照材料面积减少的比率。这个参数的物理意义是什么?与均匀伸长率等其他参数相比,这个参数对辐照不是相对不敏感吗?2.EBR-II 反应堆内蠕变实验表明,除了在高温下,堆内蠕变对材料性能的影响与辐照后蠕变非常不同。那么,您如何预测辐照后蠕变对材料性能的影响。那么,您如何通过使用辐照后测试来预测蠕变保持时间的影响?3.疲劳测试的最新实验表明,由于保持时间而导致的损坏可能仅在钠冷反应堆中不存在的气氛中发生。这会影响您对堆内材料性能的预测吗?
在本文中,我们研究了 3D 打印聚合物复合材料在经历大变形时的失效行为。将实验结果与使用具有能量阈值和有效平面应力公式的相场断裂法的数值模拟进行了比较。将开发的框架应用于由嵌入软基质中的三个刚性圆形夹杂物组成的复合系统。特别是,我们研究了几何参数(例如夹杂物之间的距离和初始缺口的长度)如何影响软复合材料的失效模式。我们观察到复杂的失效序列,包括块体材料中的裂纹停止和二次裂纹萌生。值得注意的是,我们的数值模拟捕捉到了复合材料失效行为的这些基本特征,数值结果与实验结果高度一致。我们发现复合材料的性能(强度和韧性)可以通过选择夹杂物的位置来调整。然而,我们报告称,最佳夹杂物间距并不是唯一的,还取决于初始缺口长度。这些发现为设计性能增强的软复合材料提供了有用的见解。
近年来,半导体技术的不断缩小,极大地受益于三维(3D)集成技术和三维晶体管的快速发展。1 – 7预计未来迫切需要在更复杂的3D器件和3D动态随机存取存储器(3D DRAM)方面取得进一步进展。在此过程中,需要开发和采用许多创新的测量技术来表征3D器件和3D单元,以深入了解新器件和新材料的结构-功能关系,从而辅助设计性能更佳的先进3D器件。随着3D器件变得越来越复杂,涉及更多的埋置固/固界面,而这些埋置界面上的分子相互作用对整个器件的性能起着关键作用,应进行原位研究。极紫外 (EUV) 光刻技术已用于 3D 技术,其通过次数不断增加,可用于 7 纳米和 5 纳米节点逻辑集成电路以及 16/14 纳米节点 DRAM 的批量生产。8 – 10 与 193 纳米浸没式光刻技术相比,