摘要:如今,现代信息系统(新兴技术)正日益成为我们日常生活中不可或缺的一部分,并开始对人机交互(HCI)专业人员构成严峻挑战,因为移动和云计算以及物联网(IoT)领域的新兴技术要求 HCI 专家在系统界面设计方面投入更多精力。随着移动平台用户数量的增加,如今包括儿童、老年人和残疾人或有障碍的人,他们都要求一个有效的用户界面,能够满足他们多样化的需求,即使在移动中,也随时随地。本文回顾了当前与现代信息系统设计的 HCI 界面设计方法相关的文章(43),旨在确定和确定这些方法的有效性。研究发现,当前的 HCI 设计方法基于桌面范式,无法为移动平台用户提供基于位置的服务。研究还发现,由于这些技术的灵活性,HCI 专家用于用户界面设计的几乎所有当前界面设计标准都不是有效的,并且不支持新兴技术。根据审查结果,该研究建议将以人为本的设计与敏捷方法相结合进行界面设计,并呼吁未来的工作使用定性或定量方法来进一步研究人机交互界面设计方法,重点关注基于云的技术和其他组织信息系统。 关键词:人机交互设计方法;信息系统开发;新兴技术;移动平台;敏捷方法;用户界面 引用方式:Yakubu Bala, M., & Damla, K. (2021)。面向信息系统开发的人机交互设计方法回顾。大脑。人工智能和神经科学的广泛研究,12 (1),229-250。https://doi.org/10.18662/brain/12.1/180
© 2020. 本手稿版本根据 CC-BY-NC-ND 4.0 许可证提供 http://creativecommons.org/licenses/by-nc-nd/4.0/
相当抽象,无法指导如何设计以及设计什么。最近的研究 [ 4 ] 已开始研究设计模式以指导详细的用户界面设计。除了以用户为中心的设计 (UCD) 流程之外,还提出了设计透明 AI 系统的总体设计方法 [ 5 ]。在本文中,我们回顾了现有的设计方法研究,以指导负责任和合乎道德的 AI 系统和用户界面的设计者。然后,我们提出了一种新方法,即共同设计公平 AI 交互 (CoFAIR),该方法包括一系列共同设计研讨会,然后进行更广泛的评估,以创建合适的用户界面,使其能够探索目标用户群体的公平性。我们通过案例研究展示了该方法的应用。我们讨论了我们的方法的局限性,以及如何将此方法推广到设计合乎道德和负责任的人工智能系统。
本材料基于美国能源部电力办公室资助的工作,资助编号为 DE-OE0000818 和 DE-OE0000810。本报告是作为美国政府机构资助工作的记录而编写的。美国政府及其任何机构,或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定意味着美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
本文从行业视角对系统弹性和弹性设计方法进行了调查,并简要介绍了组织弹性主题。首先,本文对弹性、系统功能、逆境和弹性生命周期进行了综合定义,然后介绍了操作响应时间表、故障源和分类。接下来,本文讨论了弹性设计,并介绍了系统理论,回顾了权衡分析和弹性依赖关系。然后,本文介绍了十几种弹性设计模式,供读者在制定自己的解决方案时参考。本文还介绍了支持非功能性设计主题,包括可用性、性能、安全性、可靠性以及使用可靠性框图的可靠性分配。此外,本文还回顾了故障模式和影响分析,并讨论了弹性成熟度模型。最后,本文介绍了几个弹性设计示例,并提出了一系列关于如何在 IT 环境中应用系统弹性概念和方法的建议。
我定义了一种采用现有外形尺寸、利用完善的身体实践和传统的新型可穿戴技术——传家宝可穿戴设备。我认为这类可穿戴技术可以与身体上的技术建立有意义的关系,这种关系比现代可穿戴技术更类似于传统穿戴在身上的物品的体验。我提出了一个轻量级框架来促进传家宝可穿戴技术的设计,并详细介绍了为实现该框架的操作而设计的五个示例原型:指甲佩戴的设备、交互式头发、动态服装和配饰、交互式帽子和乳液界面。传家宝可穿戴设备的概念、框架和示例原型展示了如何将基于身体的技术的局限性和约束转化为设计机会,并强调了以身体为中心的实践如何为新的和具体化的可穿戴技术提供信息。
药物设计的目的是寻找能与特定蛋白质(与特定疾病相关)结合并阻断(或增强)蛋白质活性的新分子,从而改变疾病的进程。药物分子还具有其他某些必要的特性,例如选择性和安全性。由于药物开发成本不断增加以及潜在候选药物的失败率很高,因此需要不断开发新的创新药物。例如,进入临床试验的新药的 FDA 批准率仅为 19% [1] 。在过去的几年里,人们对从新型化学中寻找候选药物产生了浓厚的兴趣,这促使设计师探索越来越大的化学空间 [2] 。然而,对于大多数计算机系统来说,探索大型化学空间需要太长时间,尤其是那些包含超过 10 亿个分子的化学空间。我们在此介绍使用量子启发技术来搜索大型化学空间,作为显著加速任何计算药物设计活动的第一步的手段。
药物设计的目的是寻找能与特定蛋白质(与特定疾病相关)结合并阻断(或增强)蛋白质活性的新分子,从而改变疾病的进程。药物分子还具有其他某些必要的特性,例如选择性和安全性。由于药物开发成本不断增加以及潜在候选药物的失败率很高,因此需要不断开发新的创新药物。例如,进入临床试验的新药的 FDA 批准率仅为 19% [1] 。在过去的几年里,人们对从新型化学中寻找候选药物产生了浓厚的兴趣,这促使设计师探索越来越大的化学空间 [2] 。然而,对于大多数计算机系统来说,探索大型化学空间需要太长时间,尤其是那些包含超过 10 亿个分子的化学空间。我们在此介绍使用量子启发技术来搜索大型化学空间,作为显著加速任何计算药物设计活动的第一步的手段。
2.5-DOF 两个半自由度 6-DOF 六自由度 AFSIM 高级仿真、集成和建模框架 API 应用程序接口 BFS 基本可行解决方案 CAP 控制预期参数 CFD 计算流体动力学 CS 控制面 CV 控制变量 DoD 国防部 ISRES 改进的随机排序进化策略 LQR 线性二次调节器 MATLAB 矩阵实验室 NASA 美国国家航空航天局 NDI 非线性动态反演 NED 东北向下 NLOPT 非线性优化 PI 比例积分控制 TSPI 时间空间位置信息 UAV 无人驾驶飞行器 WGS84 世界大地测量局 1984 HALE 高空长航时飞机