IT和EDA支持组织面临的挑战是以满足时间表和预算要求的方式提供运行工作流量所需的基础架构。他们必须投资于越来越大的服务器农场和高性能存储系统,以使工作流量的高质量,快速的周转。花费了很多整体设计时间来验证组件。诸如知识产权(IP)核心的表征,功能性验证和时机分析的表征量之类的流量具有刺激性的需求,并限制了工程生产率。这需要具有足够的计算能力来最大程度地减少工程师等待结果的时间,但可能导致工作流程之间资源的利用不足。新的和升级的IC制造技术已经提高了峰值计算和存储要求,挑战组织以找到满足硅开发团队需求的方法,同时管理成本。
过去十年,序列库中可商用 DNA 的数量呈爆炸式增长。在三大最大的 DNA 库:iGEM、Addgene 和 DNASU 中,此类质粒的数量从 12,000 个增加到 300,000 多个。生物设计中的一个挑战仍然是如何有效、正确和无缝地使用这些和其他基于库的序列。这项工作描述了一种质粒设计方法,其中质粒被指定为简单的 DNA 序列或特征列表。然后,所提出的软件通过 Gibson assembly ® 找到最具成本效益的合成和 PCR 制备的库片段组合来构建质粒。它在用户指定和公共 DNA 数据库中查找现有的 DNA 序列:iGEM、Addgene 和 DNASU。引入并针对 2005 年之后的所有 iGEM 复合部件和 2018 年提交的所有 Addgene 载体进行了此类软件应用程序的描述,结果发现与纯合成质粒设计方法相比,成本降低了 34%。所述软件将通过缩短设计时间、提高构建质量和降低成本来改进当前的质粒组装工作流程。
摘要 — 已经开发出一种支持新型微电子集成范式的工具,通过微同轴导线键合直接建立组件之间的互连。该工具的近期用例是促进高带宽系统的快速原型设计。当进一步成熟时,它将能够以最短的设计时间快速集成具有数百或数千个互连的复杂系统。总直径在 50 到 100 毫米之间的同轴导线的自动剥离和键合带来了一系列工艺挑战,对导线的材料系统和键合工具提出了有趣的要求。本研究回顾了 Draper 目前正在开发的一种微同轴键合系统,该系统能够剥离、送料和键合微同轴导线。该系统利用电火焰熄灭和热回流的组合分别剥离外部金属屏蔽层和聚合物介电层。它利用旋转送丝机制精确控制导线位置,从而可以确定预定的导线长度。回顾了电线、工具和软件控制架构设计的进展。
自主系统通常用于环境和内部变化可能导致要求违反要求的应用中。主动适应这些变化,即在违规发生之前,比从可能由这种违规行为造成的失败中恢复过来更可取。但是,积极的适应需要方法,以及时,准确且可接受的开销进行预测违反需求。为了满足这种需求,我们提出了一种方法,允许自主系统预测违反性能,依赖能力和其他非功能性要求的行为,因此采取预防措施以避免或减轻它们。我们预测这些自主系统中断(PRESTO)的方法包括一个时间阶段和运行时间阶段。在设计时间时,我们使用参数模型检查获得代数表达式,这些代数表达式,以对内部兴趣的非功能性能(例如,可靠性,响应时间和能源使用)与系统及其环境的参数之间的关系。在运行时,我们通过将零件线性回归应用于通过监视获得的线性数据来预测这些参数的未来变化,并且我们使用代数表达式来预测这些变化对系统要求的影响。我们在两个不同领域的案例研究中通过模拟证明了Presto的应用。
制造流程得以实施。它使用计算机辅助设计 (CAD) 和计算机辅助制造 (CAM) 软件来生成产品和制造流程的数字模型。这些模型可用于模拟生产过程、识别潜在问题以及测试不同的场景以优化生产过程。提高生产零件的质量、减少物理原型模型的数量以及优化产品和流程的设计时间是虚拟制造系统的一些优势 3 。此外,它还有可能通过提高生产效率、降低成本和减少浪费来彻底改变制造业。它还为工程师提供了一个平台,可以创新和试验新的制造工艺和技术,而无需昂贵的物理原型。此外,通过最大限度地减少材料浪费和工具成本,虚拟仿真和分析功能可以降低生产成本 4 。设计、装配、零件原型设计、生产调度、计算机辅助工艺规划 (CAPP)、制造操作过程中的能源管理、物料搬运系统和数字营销是虚拟制造流程在不同行业的一些应用,以便在充满挑战的营销条件下保持竞争力 5 。虚拟制造系统在零件生产过程中的优势如图1所示。
摘要本文展示了将自主网络防御应用于工业控制系统上的潜力,并提供了一个基线环境,以进一步探索多代理强化学习(MARL)对此问题领域的应用。它引入了通用集成平台管理系统(IPMS)的模拟环境,IPMSRL,并探讨了MARL对基于通用海事的IPMS Operational Technology(OT)的自动网络防御决策的使用。网络防御行动不如企业对IT的成熟。 这是由于OT基础架构的相对“脆性”性质源于使用传统系统,设计时间工程假设以及缺乏全面的现代安全控制。 ,由于不断增加网络攻击的复杂性以及传统以IT中心的网络防御解决方案的局限性,在网络景观中有许多障碍。 传统的IT控件很少在OT基础架构上部署,并且在它们的位置,某些威胁尚未完全解决。 在我们的实验中,多代理近端策略优化(MAPPO)的共享评论家实施优于独立近端策略优化(IPPO)。 Mappo达到了800K时间段之后的最佳政策(情节结果平均值),而IPPO只能达到一百万个时间段的情节结果平均值为0.966。 超参数调整大大改善了训练性能。网络防御行动不如企业对IT的成熟。这是由于OT基础架构的相对“脆性”性质源于使用传统系统,设计时间工程假设以及缺乏全面的现代安全控制。,由于不断增加网络攻击的复杂性以及传统以IT中心的网络防御解决方案的局限性,在网络景观中有许多障碍。传统的IT控件很少在OT基础架构上部署,并且在它们的位置,某些威胁尚未完全解决。在我们的实验中,多代理近端策略优化(MAPPO)的共享评论家实施优于独立近端策略优化(IPPO)。Mappo达到了800K时间段之后的最佳政策(情节结果平均值),而IPPO只能达到一百万个时间段的情节结果平均值为0.966。超参数调整大大改善了训练性能。在一百万个时间段中,调整后的超参数达到了最佳策略,而默认的超参数只能偶尔赢得胜利,大多数模拟导致抽签。我们测试了现实世界中的约束,攻击检测警报成功,并发现当警报成功概率降低到0.75或0.9时,MARL Defenders仍然能够分别在97.5%或99.5%的情节中获胜。
摘要 — 自 2018 年 10 月 29 日发射以来,Diwata-2 已在轨运行三年。因此,其轨道配置的影响比早期阶段更加明显。本文研究了轨道漂移对影响卫星运行的当前问题(如卫星通信和图像质量)的影响。通过五次模拟,包括确定可接受的通行极限、菲律宾上空的顶点事件、通行时间的变化以及卫星时间分辨率的变化,发现卫星通行时间与发射时的设计时间相差了一个多小时。其节点进动率增加,导致通行时间推迟。卫星的时间分辨率也从 31 天变为 11 天,但代价是覆盖面积减少。使用历史双线元素 (TLE) 数据,还模拟了未来的通行。结果发现,目前存在天底指向盲区问题,覆盖了菲律宾整个面积的 58%。还进行了两项预测,以确定卫星何时在当地时间下午 3 点通过。第一种是使用卫星中天事件的线性回归,第二种是使用卫星的历史 TLE。两种预测都一致认为该事件将在 2023 年 8 月发生。因此,在此限制之后,大部分通过都不适合获取图像。
摘要:涉及高斯过程 (GP) 的多保真度 (MF) 替代物用于设计激光定向能量沉积 (L-DED) 增材制造 (AM) 中的时间过程图。过程图用于建立熔池特性(例如熔池深度)与工艺参数(例如激光功率和扫描速度)之间的关系。MFGP 替代物涉及高保真度 (HF) 和低保真度 (LF) 模型。选择 Autodesk Netfabb ® 有限元模型 (FEM) 作为 HF 模型,而选择 Eagar-Tsai 开发的分析模型作为 LF 模型。结果表明,MFGP 替代物能够成功地融合不同保真度模型中存在的信息,以设计时间前向过程图(例如,给定一组真实深度未知的工艺参数,熔池深度是多少?)。为了扩展新开发的建立时间逆过程图的公式(例如,为了实现所需的熔池深度,但不知道真实工艺参数,那么作为时间函数的工艺参数的最佳预测是什么?),在计算预算约束下,通过将 MFGP 代理与贝叶斯优化 (BO) 相结合来进行案例研究。结果表明,与单精度 (SF) GP-BO 相比,MFGP-BO 可以显著提高优化解决方案的质量,同时降低计算预算。与仅限于开发稳态正向过程图的现有方法相比,当前的工作成功地展示了在 L-DED 中实现结合不确定性量化 (UQ) 的时间正向和逆过程图。