加密原始图已用于各种非晶体目标,例如消除或降低随机性和相互作用。我们展示了如何使用密码学来改善解决计算问题的时间复杂性。特别是,我们表明,在标准的加密假设下,我们可以在保持正确性的同时设计比现有算法更快的算法。作为混凝土演示,我们构建了具有以下属性的陷阱矩阵的分布:(a)计算有限的对手无法将随机矩阵与从此分布中绘制的一个分布区分出一个随机矩阵,并且(b)给出了一个秘密键,我们可以将n×n matrix与接近近距离的矢量相乘。我们提供了过度有限的领域和真实的结构。这可以实现广泛的加速技术:任何依赖于随机矩阵的算法(例如那些使用降低维度降低的概念)的算法,可以用我们的分布中的矩阵代替它,从而实现计算加速,同时保持正确性。
摘要在2019年,Juul Labs开始在欧盟的“新技术”吊舱中进行营销,该吊舱合并了一个新的灯芯,其声称提供了“更满意”。在这项研究中,我们将新技术JUUL PODS的构造,电特性,液体成分以及烟碱和羰基排放的设计和材料与其前身进行了比较。 与制造商的主张一致,我们发现新的豆荚包含了不同的芯吸材料。 然而,我们还发现,尽管表现出不变的液体组成,装置的几何形状和加热线圈耐性,但新的POD设计比其前任导致每次粉扑的尼古丁排放大50%。 我们发现,当连接到新技术豆荚时,Juul动力单元为加热线圈提供了更一致的电压。 这种行为表明新的线圈系统在液体和温度调节的加热线圈之间提供了更好的表面接触。 POD代的总羰基排放量没有差异。 可以通过简单的芯材料的简单替换来大大改变尼古丁的产量,这强调了以产品设计而不是产品性能规格为中心的调节方法的脆弱性。在这项研究中,我们将新技术JUUL PODS的构造,电特性,液体成分以及烟碱和羰基排放的设计和材料与其前身进行了比较。与制造商的主张一致,我们发现新的豆荚包含了不同的芯吸材料。然而,我们还发现,尽管表现出不变的液体组成,装置的几何形状和加热线圈耐性,但新的POD设计比其前任导致每次粉扑的尼古丁排放大50%。我们发现,当连接到新技术豆荚时,Juul动力单元为加热线圈提供了更一致的电压。这种行为表明新的线圈系统在液体和温度调节的加热线圈之间提供了更好的表面接触。POD代的总羰基排放量没有差异。可以通过简单的芯材料的简单替换来大大改变尼古丁的产量,这强调了以产品设计而不是产品性能规格为中心的调节方法的脆弱性。
摘要在这封信中,我们提出了用于区域优化的自旋轨道磁性随机访问存储器(SOT-MRAM)的新结构。基于对SOT-MRAM布局的观察,即可以在水平方向添加金属线而不增加细胞区域,建议的设计优化了金属线路由方向以及偏向读取和写入操作的条件。与常规的SOT-MRAM(STT-MRAM)相比,该设计的设计使用45 nm CMOS技术实施,可实现42%(23%)的细胞区域减少。通过利用高自旋电流注入效率,提出的设计比STT-MRAM达到6.26倍的写入功率。此外,由于读取和编写当前路径,提出的设计可以独立优化每个路径,从而使读取功率较低7.69倍,而较高的读取磁性距离距离与stt-MRAM相比,该路径具有读写和写入操作的常见路径。关键字:MRAM,旋转轨道扭矩,区域优化分类:电子设备,电路和模块(硅,Com-pound半导体,有机和新型材料)
摘要 - 本文反映了过去24个月完成的四项研究,包括胡椒,帕罗,所有猫和狗的欢乐,米罗,pleo,pleo,padbot和更便宜的玩具,包括i)焦点小组和对适当的机器人宠物设计的访谈,ii)对机器人宠物的伦理互动以及iii唱片的互动互动以及一定的机器人之间的互动和一定的互动。在分析的研究中,总共包括371位参与者的观点。数据被审查并开采,以与形态类型在健康和社会护理中的使用和影响相关。结果表明,生物形态设计比机械态更可取,语音和生命模拟特征(例如呼吸)受到了良好的接受。拟人化表现出在唤起变质设计缺乏的恐惧和任务预测的局限性。因此,熟悉的,动物形态的外观与动画,生命模拟和语音能力的结合似乎是为健康和社会护理开发的未来机器人的研究领域。
到连续波(CW)HSR信号排除足够的有效穿透深度。确实是,hsr的基本物理学使用了CW信号,但不允许稍后放大(即更深的)到达有损培养基中(如脉冲地下雷达(ISR),HSR可能是可能的,但HSR具有不同的优势。其中最重要的是能够以ISR无法实现的分辨率进行较浅的地下成像。此外,由于相对较低的技术传输和接收触角,因此HSR系统的设计比ISR更简单。本文通过光学类比对HSR的主要原理进行了回顾,并描述了雷达全息图重建的可能算法。我们还介绍了Rascan类型的系统和应用的历史,这可能是唯一可商购的全息图地下雷达。在考虑的地下成像和遥感中,所考虑的是人道主义的脱落,建筑检查,对电介质航空航天材料的非破坏性测试,历史建筑和艺术品的调查,古生物学和安全筛查。用实验室和/或现场实验中获得的相关数据说明了每个应用程序。
摘要:火星探测计划分析小组已将测量火星大气的状态和变化作为未来几年的重点研究。气球载仪器可以弥补当地固定着陆器和全球轨道器观测之间在中尺度距离上时间和空间分辨率的差距。使用气球系统实现这一目的的想法本质上并不新鲜,在过去几十年中已经提出过。虽然这些概念被认为是在进入和下降过程中的空中部署,但本研究中概述的概念重新审视了从火星表面发射着陆器的有效载荷甲板。这种部署选项今天主要得益于微电子和传感器小型化技术的进步,这使得气球探测器的设计比以前提出的系统小得多。本文介绍了该仪器的可行性评估,并进一步详细介绍了科学和操作概念、稻草人传感器套件、其系统组件以及相关的规模和预算估算。它还补充了提出的分析方案,用于评估、管理和减轻自动将此类气球系统从行星表面发射所涉及的部署风险。
性能标准应用于建筑物/热能信封。这包括能量/建筑代码,但不限于能源/建筑物代码,并且可以包括REMP。I.意图BOCC到2030年为所有新住宅开发建立了净净目标净零是“一栋节能的建筑物,在该建筑物中,以源能源为基础,实际的年度交付能源小于或等于现场可再生的出口能源。”零能量建筑物通常在建筑物中结合能源效率和可再生能源,从而在一年的时间内导致净零能源消耗。II。 背景在2020年,县专员委员会通过了《能源法》,其中包括实施家庭能源评级系统(HERS)。 HERS是衡量房屋能源效率的行业标准。 这也是检查和计算房屋能量性能的全国认可的系统。 家庭能量评级系统使用能量评级指数-ERI。 这是100到0的量表,以测量房屋的能源效率。 比例尺上的分数越低,房屋的能源效率就越高。 ERI将房屋的能量性能与基线模型(“参考家庭”)进行了比较,而不是房屋的能量使用(通常被认为是家庭能量审核)。 ERI要求设计比基线更好。 ERI评分中的每个1分更改等效于1%的能源使用变化。II。背景在2020年,县专员委员会通过了《能源法》,其中包括实施家庭能源评级系统(HERS)。HERS是衡量房屋能源效率的行业标准。这也是检查和计算房屋能量性能的全国认可的系统。家庭能量评级系统使用能量评级指数-ERI。这是100到0的量表,以测量房屋的能源效率。比例尺上的分数越低,房屋的能源效率就越高。ERI将房屋的能量性能与基线模型(“参考家庭”)进行了比较,而不是房屋的能量使用(通常被认为是家庭能量审核)。ERI要求设计比基线更好。ERI评分中的每个1分更改等效于1%的能源使用变化。ERI分数100大约等同于根据2006 IECC建造的房屋,并用作指数的基线。2020能源代码要求房屋的得分达到30(比标准的“参考家庭”高70%),其最终目标是到2030年达到0或净零。这意味着所有建造或改建的新房屋最终必须具有30个ERI,以获得批准的建筑许可证(截至2023年)。
2 型新型口服脊髓灰质炎疫苗 (nOPV2) 是首个于 2020 年被列入世卫组织紧急使用清单的疫苗,并于 2023 年底获得世卫组织预认证,该疫苗的设计比前代疫苗基因更稳定,引起的变异脊髓灰质炎病例更少。nOPV2 的推广在应对脊髓灰质炎疫情方面继续取得成效,证实设计修改正在按预期发挥作用。PATH 目前正在规划未来几年,推进对其他 nOPV 的研究,包括一项新的临床研究,该研究将评估 2 型和 1 型 nOPV 之间的免疫干扰。这将有助于了解在两种脊髓灰质炎血清型都流行的环境中同时接种 nOPV2 和 nOPV1(如果后者成功通过临床试验)的可行性。此外,PATH与药品和保健产品管理局合作,在脊髓灰质炎疫苗制造商之间启动了一项合作研究,以标准化高通量测序在常规脊髓灰质炎疫苗放行测试中的使用,这是一种资源密集程度较低的方法,符合在实验室测试中取代、减少和改进动物使用的努力。
多个组件部分的长DNA序列的一锅组装是现代合成生物学构建的迅速产生的关键。的一锅组装方法的方法是由短悬垂链接的多个片段(例如金门)取决于准确和公正的连接。迄今为止的连接设计很大程度上取决于使用经验法则和经验成功的使用,而不是有关连接酶保真度和偏见的详细数据。在这项研究中,我们应用了太平洋生物科学单分子实时测序技术来直接测量单个实验中每个可能的5'基础悬垂配对的连接频率。使用IIS类型限制酶BSAI,已应用此综合数据集来预测金门组装(GGA)的准确性。基于连接数据设计的十个片段组件,其连接数据预计会导致高或低的保真度组件。实验结果不仅证实了总体准确性,还确认了观察到的特定不匹配连接误差及其相对频率。数据进一步用于设计LAC操纵子的12-或24-片段组件,这些组件被证明以高忠诚度和效率组装。因此,连接酶保真度数据允许预测高准确的悬垂对套件的设计比经验法则更大的灵活性,即使在定义的编码区域内,也可以在没有天然DNA序列修改的情况下,在高准确的连接点上安装> 20个片段。
本研究调查了在飞机开发过程中概念阶段就已纳入工业级遗留系统仿真模型的影响。通过一种完全基于开放标准的遗留模型 (LM) 集成新方法,将两个不同保真度级别的系统仿真模型(一个基于手册方法,代表低保真度仿真模型)纳入飞机尺寸框架,另一个基于来自类似设计的先前飞机项目的遗留数据,被认为具有更高的保真度。根据机翼参考面积和发动机尺寸对最终的飞机设计进行评估。根据集成和开发工作以及执行时间对 LM 和手册模型 (HM) 进行评估。研究发现,模型保真度的选择会影响飞机的最终设计,低保真度的 HM 产生的设计比高保真度的 LM 具有更大的机翼参考面积和发动机尺寸。结果评估表明,HM 比 LM 更耗时。因此,尽管 LM 的集成工作比 HM 的开发时间更长,但 LM 产生的结果信心增加的好处超过了 LM 集成包装器开发的初始成本。此外,一旦构建了 LM 集成包装器,与其他具有相同接口的 LM 的集成类似于“即插即用”,允许更彻底的设计空间探索,尽管仅限于模型的操作域 (OD)。就执行时间而言,基于 LM 的优化过程是基于 HM 的优化过程的两倍。但是,执行时间足够短,不会成为概念阶段 LM 纳入的障碍。