关键设计评审 合同数据 测试清单 承包商提供的设备数据 项目描述 环境压力筛选 故障模式、影响和临界性分析 故障报告、分析和纠正措施系统。故障评审委员会 全面工程开发 政府提供的设备 政府/行业数据交换计划 政府工厂代表 后勤支持分析计划 后勤支持分析记录 内存循环失败次数 任务完成成功概率 关键故障之间的任务时间 停机事件之间的平均时间 故障之间的平均时间 维护行动之间的平均时间 移除之间的平均时间 采购活动(包括计划/项目办公室)
为了应对这一挑战,我们设想了 SLIM——一个用于实现下一代复杂系统的协作式、基于模型的系统工程工作区。SLIM 使用 SysML 来表示系统的前端概念抽象,该系统可以与特定学科工具和标准中模型的底层细粒度连接“共同发展”。借助 SLIM,系统工程师可以直接从基于 SysML 的系统模型推动自动化需求验证、系统模拟、权衡研究和优化、风险分析、设计评审、系统验证和确认以及其他关键系统工程任务,从开发的最早阶段开始。SLIM 提供独立于任何系统工程方法的分析工具,以及将 SysML 与各种 COTS 和内部设计和模拟工具连接起来的集成工具。
潜伏电路分析可以应用于有限的子系统、完整的功能系统或完整的车辆或程序。分析基于“竣工”示意图、图纸、线路清单和“编码”源计算机程序形式的文档。开始潜伏电路分析的首选时间是在关键设计评审 (CDR) 之前的工程开发阶段,但潜伏电路分析可以在程序的任何阶段执行。在整个程序/项目图纸确定基线之前,无法完成分析。在程序的最后阶段执行潜伏电路分析往往会增加程序成本,因为可能需要重新设计。图 1 说明了在程序后期进行更改的影响。
在项目制定初期,潘多拉团队开发了一套高保真参数化模拟和建模工具,以估计两个成像通道的性能。这使得一种独特的自下而上的方法来推导系统要求成为可能。这种方法虽然对于航空航天任务来说非常规,但却使以前分散的现有技术和能力在整个任务过程中产生了协同作用。潘多拉充分利用了现有的能力,这些能力不需要或只需要很少量的工程开发,以及固定价格合同,以保持在先驱者级任务的限制范围内。潘多拉将颠覆半米级天文台的成本进度范式。该团队正在为 2023 年 10 月的关键设计评审做准备。预计将于 2025 年初发射到太阳同步低地球轨道。
1.0 目标................................................................................................................................1 1.1 COTS/NDI、改进型 COTS/NDI 和定制电源........................................................................2 1.1.1 COTS/NDI.................................................................................................................2 1.1.2 改进型 COTS/NDI.......................................................................................................2 1.1.3 定制....................................................................................................................3 1.2 电源系统开发.............................................................................................................3 1.2.1 顶层系统要求和规范开发....................................................................................4 1.2.2 权衡研究.............................................................................................................6 1.2.3 建模和仿真.............................................................................................................8 1.2.4 设计评审.............................................................................................................8 1.2.5 电源系统集成和测试.............................................................................................9 1.2.6 系统设计和对电源系统组件的影响.....................................................................9 1.3 电源电源性能规范 ................................................................................................9 1.4 市场调研 ................................................................................................................10 1.4.1 电源采购/开发时间 ..............................................................................................11 1.4.2 电源选择/开发工时 ..............................................................................................11 1.5 电源权衡 S/选择 .............................................................................................13 1.5.1 总拥有成本 .............................................................................................................13 1.5.2 电源可靠性 .............................................................................................................14 1.6 团队合作 ................................................................................................................17 1.7 风险管理 ................................................................................................................18 1.8 注意 S ................................................................................................................18
AAI 事故调查办公室 AAM 航空医学办公室 AAMP 先进飞机机动计划 AC 咨询通告 ACE-100 小型飞机理事会 ACO 飞机认证办公室 ACSEP 飞机认证评估系统 AD 适航指令 AEG 飞机评估组 AFS 飞行标准 AIR 飞机认证服务 ANM-100 运输飞机理事会 APC 飞机-飞行员耦合 ARAC 航空规则制定咨询委员会 ATM 空中交通管理 ATOS 空中运输监督系统 AVS 航空安全副局长 CDR 关键设计评审 CFR 联邦法规 CIR 一致性检查报告 CM 状态监测 CMT 认证管理小组 CNS 通信、导航、监视 CPS 商用飞机认证过程研究 CMR 认证维护要求 CWT 中央机翼油箱 DAR 指定适航代表
SIMR 生物工程团队实习是针对高中生的生物工程实践设计体验。学生通过讲座参加有关各种生物工程研究主题的讲座,并每周 3 天(周三/周四/周五;上午 9 点至下午 4 点)从事一个解决医疗需求的真实生物设计项目。生物工程实习的暂定日期为 2025 年 6 月 9 日至 7 月 31 日。4-5 人团队的学生将在开发解决方案、评估技术优缺点、构建原型和测试其创作的某些方面时练习自己的工程和批判性思维技能。由本科生和研究生组成的教学团队教授设计过程、招募演讲者、提供指导并为学生举办设计评审。在课程结束时,学生团队将在课程结束时的 SIMR 海报会议上展示他们的原型。
1.0 目标................................................................................................................................1 1.1 COTS/NDI、改进型 COTS/NDI 和定制电源........................................................................2 1.1.1 COTS/NDI.................................................................................................................2 1.1.2 改进型 COTS/NDI.......................................................................................................2 1.1.3 定制.......................................................................................................................3 1.2 电源系统开发.......................................................................................................3 1.2.1 顶层系统要求和规范开发....................................................................................4 1.2.2 权衡研究....................................................................................................................6 1.2.3 建模和仿真....................................................................................................8 1.2.4 设计评审....................................................................................................................8 1.2.5 电源系统集成和测试.............................................................................................9 1.2.6 系统设计和对电源系统组件的影响.....................................................................9 1.3 电源性能规格 ................................................................................................................9 1.4 市场调研 ......................................................................................................................10 1.4.1 电源采购/开发时间 ..............................................................................................11 1.4.2 电源选择/开发工时 ..............................................................................................11 1.5 电源权衡 S/选择 ......................................................................................................13 1.5.1 总拥有成本 .............................................................................................................13 1.5.2 电源可靠性 .............................................................................................................14 1.6 团队合作 ......................................................................................................................17 1.7 风险管理 ......................................................................................................................18 1.8 注意 S ......................................................................................................................18
飞机设计团队面临着巨大的压力,需要快速行动并实现项目里程碑。这可能会削弱在初始生产之前对飞机设计进行额外分析和验证的动力。在这种情况下,难以察觉的错误无法被发现,并可能导致严重问题。例如,如果飞机制造商开发其商用飞机的军用衍生产品,则重新设计将尽可能快速且经济地完成。如果在电气和机械领域之间没有进行适当通信而进行的更改可能会无意中将 EWIS 违规引入设计中。如果这些问题在关键设计评审之前未被发现,制造商将需要数周甚至数月的时间来重新设计、重新验证、重新发布,然后改装每架在建飞机。这样的错误代价高昂,可能会使项目、职业甚至公司面临风险。