图 1. 碱性电解池方案 [8]。................................................................ 4 图 2. 碱性电解器工厂平衡 [8]。.............................................................. 5 图 3. PEM 电解池方案 [8]。.............................................................. 6 图 4. PEM 电解器工厂平衡 [8]。...................................................... 7 图 5. 固体氧化物电解池方案 [8]。...................................................... 8 图 6. 系统结构和组件示意图。...................................................... 14 图 7. PEM 和碱性电解器的效率曲线 [13]。............................................. 18 图 8. 每小时电解器工作条件的迭代过程方案。............................................. 19 图 9. 天然气消耗小时曲线。............................................................. 25 图 10. 光伏生产小时曲线。............................................................. 26 图 11. 光伏与电解器一天内能量曲线比较。 ........................................................................................................................... 27 图 12. 参考情景中的电解槽运行小时数。 ...................................................................................... 30 图 13. 平均负荷因数和标准差(红线)。 ...................................................................................... 31 图 14. 平均特定消耗和标准差(红线)。 .. 32 图 15. 通过改变设计负荷因数计算的平均运行负荷因数。 ............................................................. 33 图 16. 通过改变设计负荷因数计算的平均特定消耗。 ............................................................. 34 图 17. 电解槽尺寸与混合的关系。 ............................................................................. 35 图 18. 光伏电站规模与混合的关系。 ............................................................................. 36 图 19. 可变混合下的天然气节省量和电力消耗量。 ............................................................................................................. 37 图 20. 每次混合时 PEM 电解槽的行为。 ............................................................................. 38 图 21. 分析情景中的 NPV 趋势。 ................................................ 40 图 22. 主要情景下的投资细分。 ...................................................... 41 图 23. 主要情景下 LCOH 细分。 ...................................................... 42 图 24. 主要情景下的收入细分结构。 ...................................................... 43 图 25. 不同 PV-ALK 电解器比率的 NPV 趋势。 ...................................................... 44 图 26. 不同 PV-PEM 电解器比率的 NPV 趋势。 ...................................................... 44
本研究评估了一家化工厂,该工厂通过电气化重整和二氧化碳分离将沼气转化为负排放“绿色氢气”。由于避免了燃烧和通过压力壁的传热,重整器的电气化可以提高合成气产量、紧凑反应器设计和灵活操作。通过部分负荷过程模拟以及通过每小时离散化的年度模拟进行工厂规模和运行优化,评估了该工艺与太阳能和风能发电的结合。研究评估了具有不同风能和太阳能可用性的欧洲不同地区,考虑了 (i) 可再生能源和电池技术的短期和长期成本情景,以及 (ii) 不同的工厂规模(沼气容量从 390 到 3900 Nm3/h)。本文的总体范围是计算生产氢气的成本以及在不同成本情景下安装在不同地点的工厂的灵活性的经济价值。在设计负荷下,评估过程每生产一千克氢气消耗 17.7 千瓦时电力,并在所生产的氢气中保留 96% 的沼气化学能。此外,76% 的生物碳被回收为高纯度液态二氧化碳,实现高达 −9 千克二氧化碳/千克氢气的负排放。当使用 95% 的可再生能源供电时,氢气生产成本为 2.5 至 2.9 欧元/千克(长期 REN 成本情景和大型灵活工厂)到 5.9 – 7.1 欧元/千克(短期 REN 成本情景和小型非灵活工厂)。对于小型工厂,灵活性可以使氢气生产成本在短期可再生能源成本情景下相对于非灵活工厂降低 11 – 16%,在长期成本情景下降低 1 – 4%。对于大型工厂而言,采用灵活工厂可以在短期内将氢气成本降低 17 - 23%,在长期内将氢气成本降低 6 - 22%。
图 1.旧金山 ...................................................................................................................... 5 图 2.萨克拉门托...................................................................................................................... 5 图 3.指南内容概述 .................................................................................................... 6 图 4 – 商业新建建筑按建筑面积细分预测,总计 157,000,000 平方英尺/年。来源:加州能源委员会 ...................................................................... 11 图 5。模拟在设计中的作用 ...................................................................................................... 18 图 6。测量的系统气流,站点 3............................................................................................. 20 图 7。测量的空气处理器提供的冷却,站点 3(浅色条包括 2002 年 8 月至 10 月,深色条涵盖 2002 年 11 月至 2003 年 1 月) ............................................................................................. 20 图 8。典型的无管道回流管道竖井 ............................................................................................. 28 图 9。典型的管道立管 ............................................................................................................. 29 图 10。测量的照明时间表(设计负荷计算的第 90 个百分位数和能量模拟的第 50 个百分位数)小型、中型和大型办公楼 – ASHRAE 1093-RP...................................................................................................................... 38 图 11。测量的工作日照明曲线 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................................. 40 图 12。测量的周末照明曲线 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................................. 40 图 13。办公设备负荷系数比较 – Wilkins, C.K.和 N. McGaffin。ASHRAE 杂志 1994 - 测量办公楼中的计算机设备负载 ....... 41 图 14。测量设备计划(90 百分位数用于设计负载计算,50 百分位数用于能量模拟)适用于小型、中型和大型办公楼 - ASHRAE 1093-RP............................................................................................................. 44 图 15。测量的插头功率密度工作日概况 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................. 45 图 16。测量的插头功率密度周末概况 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................. 45 图 17。测量的站点 5 工作日插头负载概况(1999 年 11 月 - 2000 年 9 月)来源:Naoya Motegi 和 Mary Ann Piette,“从设计到运营:新建筑绩效合同的多年结果”,2002 年 ACEEE 夏季研究......................................................................................................................... 46 图 18。CalArch 基准测试工具结果、办公楼用电强度、PG&E 和 SCE 数据(以不同颜色表示)共计 236 栋建筑...................................................................................................................... 48 图 19。CalArch 基准测试工具结果、办公楼燃气使用强度、共计 43 栋建筑的 PG&E 数据............................................................................................. 48 图 20。2003 年 2 月 7 日在站点 #4 测得的 CO 2 水平......................................................................... 54 图 21。VAV 热水再热箱控制 - 单最大值............................................................................. 58 图 22。VAV 热水再热箱 - 双最大值......................................................................................... 60 图 23。示例 VAV 箱入口传感器性能图表,CFM 与速度压力信号............................................................................................................................. 67