基础状态的部分可观察性通常对控制学习(RL)提出了重大挑战。实际上,某些特权信息,例如,从模拟器中访问州的访问已在培训中得到利用,并取得了杰出的经验成功。为了了解特权信息的好处,我们在这种情况下重新访问并检查了几个简单且实际使用的范例。具体来说,我们首先正式化了专家蒸馏的经验范式(也称为教师学习),证明了其在发现近乎最佳政策时的陷阱。然后,我们确定部分可观察到的环境的条件,即确定性的滤波器条件,在该条件下,专家蒸馏实现了两个多项式的样品和计算复杂性。此外,我们研究了不对称参与者 - 批评者的另一个有用的经验范式,并专注于更具挑战性的可观察到的部分可观察到的马尔可夫决策过程。我们开发了一种具有多项式样本和准多项式计算复杂性的信念加权不对称的演员算法,其中一个关键成分是一种新的可培养的甲骨文,用于学习信念,可在不指定的模型下保留过滤器稳定性,这可能是独立的。最后,我们还可以使用特权信息来介绍部分可观察到的多代理RL(MARL)的可证明的效率。与最近的一些相关理论研究相比,我们的重点是理解实际启发的算法范式,而无需进行棘手的甲壳。我们开发了具有集中式训练 - 二级化 - 执行的算法,这是经验MARL中的流行框架,具有多项式样本和(Quasi-)多项式组成的复杂性,在上述两个范式中。
尽管聚合物在我们的房屋和工业应用中都广泛使用,但在暴露于恶劣的环境条件下(例如升高温度或辐射)时,对其降解机制的关键见解缺乏可量化的指标。在氧化环境中,聚合物降解以热氧化或光氧化为主导,在许多情况下,整个厚度都以异质方式发生。虽然聚合物的异质氧化是一种常见现象,但对聚合物的功能寿命的影响尚不清楚。评估这种氧化的方法是耗时的,是实施的挑战。在这里,我们展示了一种新的方法,用于使用快速准确的颜色测量技术对聚生物中异质氧化的定量评估。提出的颜色分析方法旨在提高在共同伴随的一半时间(例如凹陷或傅立叶变换红外光谱法)中获得异质氧化谱的效率。此外,通过使用能量色散X射线光谱法通过样品厚度绘制氧气浓度来验证该方法。通过生成氧化框架来证明所提出的方法的实用性,该框架针对聚合物寿命预测的实验设计。我们预计这项工作将成为使用光学特性评估聚合物中异质氧化的起点。
a 乌克兰国家科学院物理研究所,46, Prospekt Nauky, Kyiv 03028,乌克兰 b 乌克兰国家科学院材料科学问题研究所,3, Krjijanovskogo, Kyiv 03142,乌克兰 c 橡树岭国家实验室计算科学与工程部,美国田纳西州橡树岭 37831 d 宾夕法尼亚州立大学物理系和材料研究所,宾夕法尼亚州立大学公园 16802,美国 e 阿威罗大学物理系和 CICECO – 阿威罗材料研究所,葡萄牙阿威罗 3810-193 f 乌日霍罗德大学固体物理与化学研究所,乌克兰乌日霍罗德 88000 g 田纳西大学材料科学与工程系,美国田纳西州诺克斯维尔 37996
出版物在同行评审期刊P147中的国际出版物。M. P. Abrahams,M。Oudich,Y。Revalor,N。Vukadinovic和M. B. Assouar。 “用于宽带声吸收的混合超薄跨表面”。 应用物理信124,151702(2024)。 P146。 T. Guo,M。B. Assouar,B。Vincent&A。Merkel«边缘状态在非Hermitian复合声音Su Schrieffer Heeger链中»应用物理学杂志135,043102(2024)P145。 W. ding,T。Chen,D。Yu,C。Chen,R。Zhang,J。Zhu,M。B. Assouar“低频频段的手性语音晶体中的同骨性”国际机械科学杂志261,108678(2024)。 P144。 L. Cao,S。Wan,Y。Zeng,Y。Y. X. Fan,Y。Zhu,N。Li,C。Weng&M。B. Assouar“用于加密信息传输的声学元数据”的物理评论应用于20,044048(2023)P142。 M. Jiang,Y-F。 Wang,M。B. Assouar&Y-S。 Wang“基于界面阻抗理论的弹性剪切 - 摩托波波的无散射调制”物理评论应用于20,054020(2023)P141。 W. ding,T。Chen,C。Chen,D。Chronopoulos,M。B. Assouar,Y。Wen,J。Zhu“用类似于Thomson散射的手性声音晶体开放的带盖的描述”新的Physics Physics 25,103001(2023)P140。 X-R。李,J-J。 冯,b-c。 ping,y。 太阳,D-J。 Wu&M。B. Assouar“具有可调型孔隙轨道角动量光谱的周期性声音涡流”的物理评论应用于20,034008(2023)P139。M. P. Abrahams,M。Oudich,Y。Revalor,N。Vukadinovic和M. B. Assouar。“用于宽带声吸收的混合超薄跨表面”。应用物理信124,151702(2024)。P146。T. Guo,M。B. Assouar,B。Vincent&A。Merkel«边缘状态在非Hermitian复合声音Su Schrieffer Heeger链中»应用物理学杂志135,043102(2024)P145。W. ding,T。Chen,D。Yu,C。Chen,R。Zhang,J。Zhu,M。B. Assouar“低频频段的手性语音晶体中的同骨性”国际机械科学杂志261,108678(2024)。P144。L. Cao,S。Wan,Y。Zeng,Y。Y.X.Fan,Y。Zhu,N。Li,C。Weng&M。B. Assouar“用于加密信息传输的声学元数据”的物理评论应用于20,044048(2023)P142。M. Jiang,Y-F。 Wang,M。B. Assouar&Y-S。 Wang“基于界面阻抗理论的弹性剪切 - 摩托波波的无散射调制”物理评论应用于20,054020(2023)P141。 W. ding,T。Chen,C。Chen,D。Chronopoulos,M。B. Assouar,Y。Wen,J。Zhu“用类似于Thomson散射的手性声音晶体开放的带盖的描述”新的Physics Physics 25,103001(2023)P140。 X-R。李,J-J。 冯,b-c。 ping,y。 太阳,D-J。 Wu&M。B. Assouar“具有可调型孔隙轨道角动量光谱的周期性声音涡流”的物理评论应用于20,034008(2023)P139。M. Jiang,Y-F。 Wang,M。B. Assouar&Y-S。 Wang“基于界面阻抗理论的弹性剪切 - 摩托波波的无散射调制”物理评论应用于20,054020(2023)P141。W. ding,T。Chen,C。Chen,D。Chronopoulos,M。B. Assouar,Y。Wen,J。Zhu“用类似于Thomson散射的手性声音晶体开放的带盖的描述”新的Physics Physics 25,103001(2023)P140。X-R。李,J-J。冯,b-c。 ping,y。太阳,D-J。Wu&M。B. Assouar“具有可调型孔隙轨道角动量光谱的周期性声音涡流”的物理评论应用于20,034008(2023)P139。Y. z-l。 Xu,D-F。王,y-f。史,Z-H。 Qian,M。B. Assouar,K-C。 Chuang“利用Aperiodic弹性跨表面的任意波前调制”国际机械科学杂志255,108460(2023)P137。 X. fan,Y。Zhu,Z。Su,X。Huang,Y。Kang,H。Zhang,W。Kan&M。B. Assouar«横向粒子«横向粒子捕获使用有限的贝塞尔束,基于声学上的底膜”Y.z-l。 Xu,D-F。王,y-f。史,Z-H。 Qian,M。B. Assouar,K-C。 Chuang“利用Aperiodic弹性跨表面的任意波前调制”国际机械科学杂志255,108460(2023)P137。X.fan,Y。Zhu,Z。Su,X。Huang,Y。Kang,H。Zhang,W。Kan&M。B. Assouar«横向粒子«横向粒子捕获使用有限的贝塞尔束,基于声学上的底膜”
Archer Western 团队由行业领先的弗吉尼亚州和美国东南部设计和施工公司组成,他们拥有管理和建设弗吉尼亚州北部这一备受瞩目的交通项目的资源、经验和能力。支持团队成员拥有良好的业绩记录,他们是根据以前的工作关系和在设计、质量、公用事业协调和通行权收购服务方面提供补充服务和资源的能力而精心挑选的。作为一个综合组织,我们的团队支持与已建立的内部和外部关系进行有效沟通,这将成为我们与 VDOT 合作的基础。这种方法将帮助我们管理各种各样的设计和施工要求,为 VDOT 提供一个项目,以满足提供额外容量、减少拥堵、改善可达性和流动性以及提高 7 号公路走廊这一部分的安全性的目标。